“The Botanists Among Us: Host plant specialization in insects”

It’s been a busy week for me—just two days after doing a presentation on tiger beetles to the Webster Groves Nature Society’s Entomology Group, I gave a talk to the St. Louis Chapter of the Missouri Native Plant Society. As implied by the title, the talk focused on host plant specialization among insects, first covering the major groups of plant-feeding insects and the evolutionary themes involved in adaption to (and away from) plant-feeding, then moving to examples of different types of host plant specificity and highlighting some of the more interesting insects that I’ve encountered (and managed to photograph) over the years.

Like my talk two nights earlier, it was another fun and lighthearted conversation with a highly engaged crowd, and I appreciate the great interest shown by a group that is normally much more focused on plants than on insects. Once again, it was well-attended locally, but for the benefit of those who were not able to attend the meeting in person and that may be interested in this subject, I’ve prepared a PDF version* of the presentation that you can download and peruse at your convenience.

* All content is copyrighted and may not be reproduced or distributed without written consent.

© Ted C. MacRae 2019

“Highlights from Nearly 20 Years of Chasing Tiger Beetles in Missouri”

Last night, Chris Brown—my longtime field companion and fellow tiger beetle aficionado—and I gave a presentation to the Entomology Group of the Webster Groves Nature Study Society at Shaw Nature Reserve in Gray Summit, Missouri, giving highlights from our nearly 20 of “chasing” tiger beetles in Missouri. Our work not only revealed two new state records (Cicindelidia trifasciata ascendens and Cylindera celeripes), bringing to 24 the total number of tiger beetle species known from the state, but also featured intensive surveys for several species of conservation interest.

It was a fun, lighthearted presentation that emphasized the experiences we had while conducting these surveys and our growth as natural historians as a result of them. Of course, beautiful photographs of tiger beetles were used liberally throughout the presentation (for those who do not know, Chris was my early mentor in the area of insect macrophotography!). While we had a nice local turnout, I realize most of the readership of this blog could not have attended this event in person. Never fear, however, for I have saved the slide deck as a PDF document* that you can download and peruse at your convenience.

* All content is copyrighted and may not be reproduced or distributed without written consent.

© Ted C. MacRae 2019

 

A “superb” southwestern Missouri cicada

Back in the summer of 2015, I made an early August trip to the White River Hills region of extreme southwestern Missouri. I was actually looking for one of Missouri’s more uncommon cerambycid beetles – Prionus pocularis, associated with shortleaf pine in the mixed hardwood/pine forests across the southern part of the state. I did not encounter the beetle in either my prionic acid-baited pitfall traps or at the ultraviolet lights I had set up the evening before, but while I was in the area I thought I would visit one of my favorite places in the region – Drury-Mincy Conservation Area in Taney Co. Sitting right on the border with Arkansas, the rolling hills of this area feature high-quality dolomite glades and post oak savannas. I’ve had some excellent collecting here in the past and hoped I would find something of interest this time as well. I didn’t arrive until after midnight, and since there are no hotels in the area I just slept in the car.

Neotibicen superbus

Neotibicen superbus

The next morning temperatures began to rise quickly, and with it so did the cacophony of cicadas getting into high gear with their droning buzz calls. As I passed underneath one particular tree I noticed the song was coming from a branch very near my head. I like cicadas, but had it been the song of a “normal” cicada like Neotibicen lyricen (lyric cicada) or N. pruinosus (scissor grinder cicada) I would have paid it no mind. It was, instead, unfamiliar and distinctive, and when I searched the branches above me I recognized the beautiful insect responsible for the call as Neotibicen superbus (superb cicada), a southwest Missouri specialty—sumptuous lime-green above and bright white pruinose beneath. I had not seen this spectacular species since the mid 1980s (most of my visits to the area have been in the spring or the fall rather than high summer), and I managed to catch it and take a quick iPhone photograph for documentation. A species this beautiful, however, deserves ‘real’ photos, so I spent the next couple of hours attempting to photograph an individual in situ with the big camera. Of course, this is much, much easier said than done, especially with this species—their bulging eyes give them exceptional vision, and they are very skittish and quick to take flight. Most of the individuals that I located were too high up in the canopy to allow a shot, and each individual that was low enough for me to approach ended up fluttering off with a screech before I could even compose a shot, much less press the shutter. Persistence paid, however, and I eventually managed to approach and photograph an unusually calm female resting – quite conveniently – at chest height on the trunk of a persimmon tree.

Sanborn-Phillips_2013_Fig-16

Source: Sanborn & Phillips (2013).

According to Sanborn & Phillips (2013, Figure 16 – reproduced above), Neotibicen superbus, is found in trees within grassland environments primarily in eastern Texas and Oklahoma, although records of it exist from each of the surrounding states – especially southern Missouri and northern Arkansas (Figure 16 below, Sanborn & Phillips 2013). Later the same day I would see the species abundantly again in another of the region’s dolomite glades – this one in Roaring River State Park further west in Barry Co., suggesting that dolomite glades are the preferred habitat in this part of its range. Interestingly, I think the Missouri records at least must be relatively recent, as Froeschner (1952) did not include the species in his synopsis of Missouri cicadas. This was all the information I had back in the 1980s when I first encountered the species in southwestern Missouri, its apparent unrecorded status in the state making it an even more exciting find at the time.

Neotibicen superbus

Neotibicen superbus

REFERENCES:

Froeschner, R. C.  1952. A synopsis of the Cicadidae of Missouri. Journal of the New York Entomological Society 60:1–14 [pdf].

Sanborn, A. F. & P. K. Phillips. 2013. Biogeography of the cicadas (Hemiptera: Cicadidae) of North America, north of Mexico. Diversity 5(2):166–239 [abstractpdf].

© Ted C. MacRae 2018

When is an ant not an ant? When it’s a jumping spider, of course!

Peckhamia sp.

This past weekend my good friend and long-time collecting partner Rich and I visited one of our favorite insect collecting spots in all of Missouri – Victoria Glades Conservation Area. Together with an adjacent parcel owned by The Nature Conservancy, these represent one of the finest remaining examples of the glades – more properly called xeric limestone prairies – that once extended in an arc through Jefferson Co. south of St. Louis on south and west facing exposures of dolomitic limestone1.

For a more detailed description of the geology and natural history of these glades, see my post The Glades of Jefferson County.

Spring was late this season, with cool and wet conditions persisting into the early part of May. During the past two weeks, however, it has warmed and dried considerably (too much, almost), and thus the cacophony of life has begun in earnest. Still, despite the heat, we found the abundance of insects rather sparing, which in combination with the suite of wildflowers that were seen in bloom gave a feel of early spring (I mentioned to Rich that it “seemed like May 10th”). There were a few good species to be found though, the first being a single Agrilus fuscipennis, beaten off of its host persimmon (Diospyros virginiana). Continued beating of persimmon turned up little else, at which point I turned my attention to the post oak (Quercus stellata) trees lining the margins of the glades. The first couple of branches that I whacked turned up little of interest, but an “ant” that fell on my sheet from the third branch gave me pause – it was a little “too big”, and the manner it which it scampered across the sheet was a little “too urgent” and “too halting”. When I looked at it more closely, I realized that it was, of course, not an ant at all, but a jumping spider (family Salticidae), and more specifically a species in one of several genera within the family that are known for their striking mimicry of ants.

I have long wanted to photograph one of these gems, having seen them once or twice before but thus far not successful in photographing them. In this particular case, I had the advantage of somebody to help me, so I coaxed the spider onto a stick and had Rich hold it while I got my camera ready. Unfortunately, the ant… er, spider just kept running up and down the stick from one end to the other, forcing me to repeatedly grab the stick on alternating ends with one hand after the other (and quickly or it would run onto my hands!) and never really having an opportunity to attempt some shots. After a time of this, I decided to coax it onto a leaf instead to see if the larger, flatter surface might be of some help. It really didn’t, though, as the ant JUST. WOULD. NOT. STOP. RUNNING! Eventually, I resorted to simply trying to track the spider through the lens – holding the camera with my right hand and the leaf with my left, and firing shots whenever I thought the spider might be even close to in focus. I can be patient when photographing insects (and their kin), but this spider certainly tested my limits, and I eventually ended the session not at all confident that I had any usable photos. To my surprise, I managed to get one image (above) that wasn’t half bad and another that was at least serviceable (below – focus a bit too much in “front”).

Peckhamia sp.

As far as I can tell, this individual is a species of the genus Peckhamia, which Cutler (1988) distinguishes from the related genus Synageles by the carapace being more convex in the cephalic area and sharply declivous (downward sloping) behind the third row of eyes. The individual in these photos seems to agree with these characters, if I am interpreting them correctly. He also mentions the habit of species in these two genera to hold their second pair of legs aloft to give the illusion of them being antennae, which we noted for this individual and can attest to its effectiveness!

For more about ant mimics that I have found in Missouri, see my previous posts Flower ants? Check again! and North America’s itsiest bitsiest longhorned beetle.

REFERENCE:

Cutler, B. 1988. A revision of the American species of the antlike jumping spider genus Synageles (Araneae, Salticidae). Journal of Arachnology 15(3) [1987]:321–348 [pdf].

© Ted C. MacRae 2018

Ellipsoptera lepida – ghost tiger beetle

In the early 2000s, Chris Brown and I were beginning our general survey of Missouri tiger beetles. Our goal was to characterize the occurrence and distribution of all species within the state. At the time, 22 species were known to occur in Missouri, and our work would uncover the presence of two more—one being a vagrant occurrence of the widespread Cicindelidia trifasciata ascendens (ascendent tiger beetle) (Brown & MacRae 2005); the other being the rare Cylindera celeripes (swift tiger beetle) (MacRae & Brown 2011). Of the species already known from the state, however, some were known from only a few records and hadn’t been seen in the field by either Chris or myself. One such species was Ellipsoptera lepida (ghost tiger beetle), an almost pure white species known to occur in deep, dry sand habitats over most of central North America (Pearson et al. 2015). At that time, I had still seen only the more common species in Missouri, and the combination of its name and unusual, mostly-white color put this species high on my “must see” list.

Ellipsoptera lepida (ghost tiger beetle)

My first experience would come quickly. In June 2001, Chris and I visited a recent addition to Weldon Spring Conservation Area on the north side of the Missouri River in St. Charles Co. called Darst Bottoms. The area at one time was productive farmland, but the “Great Floods” of 1993 and 1995 left deep deposits of sand over the area. While no longer suitable for agriculture, the process of succession allowed valuable wildlife habitat to develop, and the area was purchased and added to the Conservation Area. By the time of our visit in 2001, early succession had resulted in young forests of mostly eastern cottonwood (Populus deltoides) surrounding a vast central plain of white sand. Chris and I didn’t know what to expect on that first visit, both of us being in the early stages of our survey of Missouri tiger beetles, but we figured we would find something interesting.

Ellipsoptera lepida (ghost tiger beetle)

I still remember the moment I first saw E. lepida and realized what it was. We had already found Cicindela formosa generosa (eastern big sand tiger beetle)—the first time I had seen that species in Missouri outside the southeastern lowlands (we would eventually find it at many sites along the Missouri and Mississippi Rivers and a few smaller interior rivers)—and were searching for additional specimens. We were in a small opening adjacent to the larger central plain when I thought I saw something move near my feet. I stopped to look down but didn’t see anything, so I began walking again while scanning the ground ahead of me. Again, I thought I saw movement nearby and stopped to look, this time pausing a little longer and doing so a little more carefully. That’s when I saw it, and even though I had seen only photographs of the species and museum specimens I recognized it instantly for what it was and yelled out “lepida!” Chris came over to see for himself, and we marveled at the effectiveness of their camouflage—they seemingly were able to disappear right before our eyes even though we were looking right at them.

Sand plain habitat for Ellipsoptera lepida (ghost tiger beetle).

Over the next few years, Chris and I found the species at several sites along or not too distant from the Missouri and Mississippi Rivers—always on sand deposits deep enough to become dry. We never found them in great numbers, sometimes just single individuals while other sand residents were abundant, and not at all sites where we did find more reliable species such as C. f. generosa and C. tranquebarica (oblique-lined tiger beetle). Pearson et al. (2015) mention that despite the broad distribution of this species across central North America that its actual occurrence is rather spotty and localized and that it has disappeared from many sites where it was previously known to occur. This was our experience in Missouri as well, as many of the museum records we had gleaned for the species no longer appeared to support populations of the beetle. This is likely due, at least in part, to the ephemeral nature of the habitats on which the species depends, at least those along the big rivers that are vulnerable to revegetation and succession back to bottomland forest.

Ellipsoptera lepida (ghost tiger beetle)

Of course, all of this occurred long before I took up insect macrophotography in 2009, and while I had managed to photograph most of the tiger beetle species in Missouri in the years that followed, E. lepida was one that I continued to lack. In the summer of 2015 I decided to rectify that situation and, when the time was right, returned to Darst Bottoms in hopes of finding and photographing this species. Imagine my surprise when I hiked into the area and, instead of young cottonwood stands surrounding a vast, barren sand plain, I found mature cottonwood forests surrounding a thickly vegetated sand prairie with only isolated patches of barren sand. Needless to say, with such little suitable habitat for the beetles they were neither abundant nor even common. In fact, the only evidence I found that told me they were still there at all was coyote scat containing unmistakable remains of the adult beetles. Skunked on my first effort, I decided to try another spot where we had seen good populations of the beetle—Overton Bottoms Conservation Area along the Missouri River in Cooper and Monteau Counties in central Missouri, now Overton Bottoms South Unit and part of the Big Muddy National Wildlife Area. Like Darst Bottoms, this area had experienced revegetation and succession in the decade+ since my previous visit; however, unlike the former there still remained a vast central plain that, while vegetated, was sparsely vegetated enough to continue providing suitable habitat for the beetle. It took some work, but I eventually found the beetles localized in one part of the sand plain (see photograph ), and there were enough of them out at the time of my visit that I succeeded in getting the series of photographs shown in this post.

Ellipsoptera lepida (ghost tiger beetle)

I have fond memories of all 24 tiger beetle species in Missouri—each one presenting a unique collection of experiences that will fuel my love affair with the group for years to come. With E. lepida, the jubilance and excitement of that first, unexpected encounter remains near the top of the list for me.

REFERENCES:

Brown, C. R. & T. C. MacRae. 2005. Occurrence of Cicindela (Cicindelidia) trifasciata ascendens (Coleoptera: Cicindelidae) in Missouri. Cicindela 37(1–2):17–19 [pdf].

MacRae, T. C. & C. R. Brown. 2011. Historical and contemporary occurrence of Cylindera (s. str.) celeripes (LeConte) (Coleoptera: Carabidae: Cicindelinae) and implications for its conservation. The Coleopterists Bulletin 65(3):230–241 [pdf].

Pearson, D. L., C. B. Knisley, D. P. Duran & C. J. Kazilek. 2015. A Field Guide to the Tiger Beetles of the United States and Canada. 2nd Edition. Oxford University Press, New York, 264 pp. [Oxford description].

© Ted C. MacRae 2017

Beetle Collecting 101: Fermenting bait traps for collecting longhorned beetles

One of the most useful collecting techniques for those interested in longhorned beetles (families Cerambycidae and Disteniidae) is fermenting bait traps. I was first clued into the use of such traps soon after I began collecting these beetles in the early 1980s and encountered a series of rather old publications by A. B. Champlain and S. W. Frost detailing their usefulness and the diversity of species found to be attracted to them. Champlain & Kirk (1926) listed 15 species of Cerambycidae attracted to bait pans containing a mixture of molasses and water. This list was expanded to 37 species by Champlain & Knull (1932), who noted that a mixture of one part molasses to ten parts water in a gallon-pail seemed to give the best results. Frost & Dietrich (1929) listed 20 species captured with a mixture of one part molasses to 20 parts water. Twelve of the species they mentioned were not listed by Champlain & Knull (1932), and the list of Frost (1937) included two additional previously unrecorded species.

I made extensive use of fermenting bait traps during my 1980s survey of longhorned beetles in Missouri (MacRae 1994) using a mixture of one part molasses, one part beer, nine parts tap water, and a sprinkling of dry active yeast to start fermentation. This recipe was based on that of Champlain & Knull (1932) (although I must confess that I do not remember where I got the idea to add beer and yeast). During that study, I collected 13 species of longhorned beetles using this method and found in other collections specimens of three additional species also collected with fermenting baits. Of the species I collected, the most significant was a large, attractive Purpuricenus that closely resembled P. axillaris (which was also collected in the traps) but clearly was not that species. These eventually proved to be undescribed after I was able to examine type material in the Museum of Comparative Zoology at Harvard University, leading to a review of the genus in North America and the description of the new species as P. paraxillaris (MacRae 2000). Since then I’ve employed fermenting bait traps to collect Cerambycidae in other parts of the country (MacRae & Rice 2007), and I now have records of 72 species of U.S. Cerambycidae documented as being attracted  to fermenting baits.

Molasses-beer fermenting bait trap

Molasses-beer fermenting bait trap.

My interest in this technique was renewed some years ago when I finally succeeded in collecting the spectacular Plinthocoelium suaveolens in fermenting bait traps placed on glades in extreme southwestern Missouri. During my Missouri survey, I had done the bulk of my bait trapping along the edges of glades just south of St. Louis in Jefferson County, and while I had a record of this species in those glades I had never collected it there myself. Finally, last year I observed one of the host trees (gum bumelia, Sideroxylon lanuginosum) on these glades with the characteristic P. suaveolens larval frass pile at the base of the trunk, prompting a renewed effort this past season to collect the species there using fermenting bait traps. In early June I placed a series of traps at Valley View Glades Natural Area (~4 miles NW of Hillsboro) and Victoria Glades Natural Area (~2.5 miles S of Hillsboro). At both locations four traps were placed along the upwind interface between dry, post oak woodland and dolomite glades. Traps were spaced about 50–100 yards apart and hung to ensure exposure to sunlight but minimize the chance they would be discovered by vandals. Each trap consisted of a 2-L plastic bucket with a small hole drilled near the rim on each side and a length of wire attached to allow hanging from a nail in the side of a tree. Two baits were used: 1) molasses/beer, and 2) red wine. The molasses/beer recipe was based on Guarnieri (2009)—more concentrated that what I have used previously, and was prepared by combining a 12-oz (355 mL) jar of dark molasses with an approximately equal volume of tap water in a 1-L plastic bottle, agitating thoroughly, and bringing to one liter volume with tap water. At the trap site, about 500 mL of diluted molasses was added to the trap, followed by a 12-oz can/bottle of beer and one-half of a 7-g packet of dry, active yeast. Red wine bait was a cheap jug variety, undiluted, with about 500 mL added to the trap. Molasses/beer and red wine were alternated in the traps at each location and replaced every two weeks or if excessively diluted by rain or evaporated during hot, dry conditions. Traps were checked weekly from early June to mid-September by pouring the trap contents through a kitchen strainer over an empty bucket and transferring beetles with forceps to empty vials. Once back at the vehicle, tap water was added to each vial and the vial agitated to rinse the specimens and remove bait residue. The water was decanted and the beetles blot-dried with paper towels before transfer to clean vials containing tissue and ethyl acetate to halt decay and maintain the beetles in a relaxed state for pinning.

Cerambycidae from fermenting bait trap

A charismatic trio of Cerambycidae from fermenting bait traps at Victoria Glades: Purpuricenus paraxillaris (left), Plinthocoelium suaveolens (center), and Stenelytrana emarginata (right).

A note about my preferred trap design. I have always used open-top buckets (previously 1-G metal, now 2-L plastic), but “window jugs” (i.e., ½-G milk or juice jugs with holes, or “windows”, cut in the sides) are also commonly used. I have not directly compared buckets with window jugs; however, I favor buckets because I believe beetles attracted to window jugs are more likely to “perch” on the trap itself rather than fall directly into the bait. I also believe that beetles, once trapped, are more likely to escape from window jugs because the window edges provide “grab” sites for beetles before they succumb. The risk of escape can be reduced if the bait surface lies well below the bottom edge of the windows, but this then limits the quantity of bait that can be used. In my experience, 500–750 mL is the minimum volume of bait that is needed to last the duration of the two-week fermentation cycle without evaporating to the point that it is not deep enough to quickly submerge beetles falling into it. Some may be concerned that open-top buckets are prone to dilution by rain, but in my experience this happens infrequently and I have not noticed diluted bait to be any less effective at attracting beetles. Rain shields, on the other hand, only serve to provide a potential perch for beetles attracted to the trap.

Plinthocoelium suaveolens

Plinthocoelium suaveolens captured in flight near its host tree, gum bumelia (Sideroxylon lanuginosum), at Victoria Glades.

A total of 558 longhorned beetles representing 16 species were collected from the traps over the course of the season (see list below). Of these, 339 specimens representing 14 species were attracted to molasses/beer, while 219 specimens representing 14 species were attracted to red wine. Ten species were represented by more than two specimens and were attracted to both bait types, the most desirable being Plinthocoelium suaveolens (41 specimens), Purpuricenus axillaris (20 specimens), P. paraxillaris (3 specimens), and Stenelytrana emarginata (6 specimens). The number of P. suaveolens collected is remarkable, considering that it was not collected during my previous trapping effort spanning several years in the 1980s. It may be significant that 1) the molasses/beer recipe used in this study was considerably more concentrated than that used in the 1980s, and 2) nearly twice as many specimens were collected in red wine (not used in the 1980s) compared to molasses/beer. I routinely examined the gum bumelia trees during my weekly visits in an attempt to find adults on their host, especially during flowering, but encountered only a single adult in flight near one of the trees—a curious result given the diurnal habits and large, conspicuous appearance of the adults. All other species collected in numbers were more attracted to molasses/beer, with the significant exception of Purpuricenus paraxillaris. Seven species taken this season were not detected with fermenting bait traps in the 1980s, bringing to 23 the number of species collected by this method in Missouri. One species, Strangalia sexnotata, is documented from fermenting bait for the first time in this study.

2015 fermenting bait trap catch

2015 fermenting bait trap catch, box 1 of 3 (click to enlarge).

2015 fermenting bait trap catch, box 2 of 3 (click to enlarge).

2015 fermenting bait trap catch, box 2 of 3 (click to enlarge).

2015 fermenting bait trap catch

2015 fermenting bait trap catch, box 3 of 3 (click to enlarge).

Longhorned beetle species and numbers taken in fermenting bait traps in 2015—most to least abundant (MB = molasses/beer, RW = red wine):

  1. Elaphidion mucronatum – 254 (MB = 176, RW = 78)
  2. Eburia quadrigeminata – 145 (MB = 73, RW = 54)
  3. Plinthocoelium suaveolens – 41 (MB = 14, RW = 27)
  4. Neoclytus scutellaris* – 32 (MB = 26, RW = 6)
  5. Parelaphidion aspersum – 26 (MB = 18, RW = 8)
  6. Purpuricenus paraxillaris – 20 (MB = 6, RW = 14)
  7. Orthosoma brunneum – 13 (MB = 8, RW = 5)
  8. Neoclytus mucronatus* – 8 (MB = 6, RW = 2)
  9. Stenelytrana emarginata* – 6 (MB = 5, RW = 1)
  10. Purpuricenus axillaris – 3 (MB = 2, RW = 1)
  11. Enaphalodes atomarius – 2 (MB = 1, RW = 1)
  12. Strangalia famelica solitaria* – 2 (MB = 2, RW = 0)
  13. Typocerus velutinus* – 2 (MB = 1, RW = 1)
  14. Xylotrechus colonus* – 2 (MB = 0, RW = 2)
  15. Elytrimitatrix undatus – 1 (MB = 1, RW = 0)
  16. Strangalia sexnotata** – 1 (MB = 0, RW = 1)

* Not previously reported at fermenting baits in Missouri.
** Not previously reported from fermenting baits anywhere.

With regards to other insects, no attempt was made to quantify their occurrence or diversity, but a few interesting specimens were collected. Elateridae (click beetles) and other beetles were notable by their absence, in contrast to the great diversity recorded from by Champlain & Knull (1932). Flower scarabs were the exception, with two Euphoria inda and a moderate series of E. sepulchralis taken only in red wine traps. The most common non-beetle insects encountered were moths, flies, and stinging wasps, for which molasses/beer seemed to be much more attractive than red wine. The majority of the wasps were Vespidae, but a few large Crabronidae (one Sphecius speciosus and two Stizus brevipennis, I think) and at least two species of Pompiliidae were collected (see box 3 image above).

The diversity of longhorned beetles collected this season was undoubtedly influenced by habitat selection for trap placement (interface between dry, post-oak woodland and dolomite glade). Different habitats would likely yield different species, although prior experience seems to suggest that traps placed in open woodlands are more productive than those placed in dense forests. Recently thinned forests may have good potential due to an abundance of dead wood from thinning operations and trees stressed by sudden exposure to sunlight. Plans are currently underway to place traps (both molasses/beer and red wine) in a variety of wooded habitats during the 2016 season.

REFERENCES:

Champlain, A.B. & H. B. Kirk. 1926. Bait pan insects. Entomological News 37:288–291 [Biodiversity Heritage Library].

Champlain, A. B. & J. N. Knull.  1932. Fermenting bait traps for trapping Elateridae and Cerambycidae (Coleop.).  Entomological News 43(10):253–257.

Frost, S. W. 1937. New records from bait traps. (Dipt., Coleop., Corrodentia). Entomological News 48:201–202 [Biodiversity Heritage Library].

Frost, S. W. & H. Dietrich. 1929. Coleoptera taken from bait-traps. Annals of the Entomological Society of America 22(3):427–436 [abstract].

Guarnieri, F. G. 2009. A survey of longhorned beetles (Coleoptera: Cerambycidae) from Paw Paw, Morgan County, West Virginia. The Maryland Entomologist, 5(1):11–22 [pdf].

MacRae, T. C. 1994. Annotated checklist of the longhorned beetles (Coleoptera: Cerambycidae and Disteniidae) known to occur in Missouri. Insecta Mundi 7(4) (1993):223–252 [pdf].

MacRae, T. C. 2000. Review of the genus Purpuricenus Dejean (Coleoptera: Cerambycidae) in North America. The Pan-Pacific Entomologist 76:137–169 [pdf].

MacRae, T. C. & M. E. Rice. 2007. Distributional and biological observations on North American Cerambycidae (Coleoptera). The Coleopterists Bulletin 61(2):227–263 [pdf].

© Ted C. MacRae 2015

Summer Insect Collecting iRecap

At the beginning of the season I was planning to spend the first week of June collecting insects in southeastern New Mexico. Family issues intervened, however, and left me with a week of vacation time and no plans on how to use it. I’ve never been one to not use vacation time, so I quickly came up with a backup plan—a Friday here and a Monday there to create several 3–4 day weekends. Long weekends may not allow travel to far off and exotic places, but they do allow me to travel a bit further than I would for a regular weekend. I also took advantage of my frequent travel for work to stop off at favorite collecting sites for an evening of blacklighting (much more fun than sitting in a hotel room) or a half-day in the field before getting back home. I always have my big camera with me for serious insect photography when the opportunity arises, but I also take frequent iPhone snapshots to document the “flavor” of my time in the field. In previous years, I’ve collected snapshots from my extended trips into “iReports”, which were later followed by posts featuring subjects that I spent “quality camera time” with (see 2013 western Oklahoma, 2013 Great Basin, and 2014 Great Plains). I’ve decided to do the same thing now, only instead of a single trip this report covers an entire summer. I realize few people have the patience for long-reads; nevertheless, enough readers have told me that they like my trip reports and all of their gory details to make this a worthwhile exercise. If you’re not among them, scan the photos—all of which were taken with a stock iPhone 5S and processed using Photoshop Elements version 11—and you’re done!


Searching for the Ghost Tiger Beetle
Central/Northwest Missouri (12–14 June 2015)

In mid-June my good friend, colleague, and fellow cicindelophile Chris Brown and I followed the Missouri River Valley across the state and and up along its northwestern border to visit previously known and potentially new sites for Ellipsoptera lepida—the Ghost Tiger Beetle. We first saw this lovely white species back in 2000 while visiting some of the large sand deposits laid down in central and east-central Missouri by the 1993 flood. In the years since these sites have become increasingly encroached by forests of eastern cottonwood (Populus deltoides), making them less and less suitable for the beetle (it also remains one of only two tiger beetles known to occur in Missouri that I have not yet photographed). In the meantime several new sand deposits have been laid down in northwestern Missouri by flooding in 2011, so the question has come up whether the beetle has yet occupied these new sites. We started out at a couple of potentially new sites in east-central Missouri (and did not find the beetle), then went to one of two known sites in central Missouri. We did not find the beetle there either, but we did find this eastern hognose snake  (Heterodon platirhinos).

Eastern hognose snake (Heterodon platirhinos)

Eastern hognose snake (Heterodon platirhinos) | vic. Eagle Rock Conservation Area, Boone Co.

Hognose snakes are well known for their vaired repertoire of defensive behaviors—from flattening of the head and hissing to rolling over and playing dead (a behavior called thanatosis)—the latter behavior often accompanied by bleeding from the mouth and even defecating onto itself. This one, however, was content to simply flatten its head and hiss, its tongue constantly flickering.

Eastern hognose snake (Heterodon platirhinos)

The flattened head is an attempt by the snake to make itself appear larger and more imposing.

Standing its ground as tenaciously as it did, I took advantage of the opportunity to close in tight and take a burst series of photos, which I used to create this animated gif of the snake’s constantly flickering tongue.

Eastern Hognose Snake (Heterodon platirhinos)

After an evening of driving to northwest Missouri and a stay in one of our favorite local hotels (eh hem…), we awoke to find the scene below at our first destination.

Ted MacRae & Chris Brown look out over a flooded wildlife refuge

Ted MacRae & Chris Brown look out over a flooded Thurnau Conservation Area, Holt Co.

No tiger beetles there! What to do now. One thing I love about modern times is the ability to pull out the smart phone and scan satellite images of the nearby landscape. Doing this we were able to locate a large sand deposit just to the south and navigate local, often unmarked roads to eventually wind up at a spot where we could access the area on foot. But before we did this we needed gas, and the only gas station for miles was a Sinclair station with a bona fide, original green dinosaur—one of the most potent and iconic corporate symbols ever! I remember these from my childhood, but this is the first one I’ve seen in years.

Authentic Sinclair dinosaur

An authentic Sinclair dinosaur guards the only gas station for miles.

Rain the night before had made the roads muddy, and it was only with some difficulty that we finally located a way to access the sand deposits we had seen on the satellite images. Even then we needed to hike a half-mile to access the sand plain, but once we got there this is what we saw:

Sand plain deposited 2009

Sand plain deposited 2011 along Missouri River, Thurnau Conservation Area, Holt Co.

At first we were optimistic—the habitat looked perfect for not only E. lepida but also the more commonly seen Cicindela formosa generosa (Eastern Big Sand Tiger Beetle) and, at least in this area, C. scutellaris lecontei (LeConte’s Tiger Beetle). We saw no adults however, as we searched the plain, and we wondered if the cool, cloudy conditions that lingered from the previous evening’s storms were suppressing adult activity. After awhile, however, we noted that we hadn’t even found evidence of larval burrows, and that is when we began to think that maybe four years wasn’t long enough for populations to establish in such a vast expanse of new habitat. Eventually Chris did find a single E. lepida adult—a nice record but certainly not evidence of a healthy population.

Sand plain deposited 2009

Seemingly perfect habitat, but void of active adults or evidence of larval burrows.

The next sand plain we visited was a little further north at Corning Conservation Area, also in Holt Co. and also laid down by the 2011 flood. Once again we saw no active tiger beetles in the area, and by this point we were convinced that the species were not just inactive but had not yet even colonized the plains. It should be noted that large sand expanses such as these actually are not exactly a natural process, but rather the result of river channeling and the use of levees to protect adjacent farmland. Before such existed, the river existed as an intricate system of braided channels that rarely experienced catastrophic flooding. Nowadays, with the river confined to a single, narrow channel, the river valley doesn’t experience a normal ebb and flow of water. Only when water levels reach such extreme levels in the narrow channel that they breach a levee does the adjacent valley flood, with the area immediately downstream from the levee breach receiving huge amounts of sand and mud scoured from the breach zone. Tiger beetle species adapted to ephemeral sand plain habitats along big rivers probably

Sand plain deposited 2009

Another sand plain deposited in 2011 at Corning Conservation Area, Holt. Co.

Cottonwoods and willows were already colonizing the edge of the plain, and the latter were heavily infested by large blue leaf beetles. As far as I know the only species of Altica in Missouri associated with willow is A. subplicata, although admittedly it is a large, diverse genus and there could be other willow-associates within the state that I am unaware of. The beetles seemed especially fond of the smaller plants (1–3′ in height), while taller plants were relatively untouched.

Altica bimarginata (willow flea beetle)

Altica subplicata? (willow flea beetle) | Holt Co., Missouri

Altica bimarginata (willow flea beetle)

Beetles congregated heavily on smaller willow plants.

Altica bimarginata (willow flea beetle)

Despite the heavy adult feeding we could find no larvae on the foliage.

Few other insects were seen. I did see a large, standing, dead cottonwood (Populus deltoides) and checked it out hoping hoping to find a Buprestis confluenta adult or two on its naked trunk (a species I found for the first time last year and still have yet to find in Missouri, although it is known from the state). No such luck, but I did collect a couple of large mordellids off of the tree. Let me say also that there were some interesting other plants in the area…

Wild hemp (Cannabis sativa)

Wild hemp (Cannabis sativa)

After satisfying ourselves that Corning also was not yet colonized by the tiger beetles, we drove further north into Atchison Co., the northwesternmost county in the state, to check out one more sand plain deposited by the 2011 flood at Nishnabotna Conservation Area. The sand plain at this area was much smaller than the two previous plains we had visited, and it was also far less accessible, requiring a bushwhacking hike through thick vegetation that was quite rank in some areas. Nevertheless, we soldiered on, motivated by the hope that maybe the third time would be a charm and we would find the beetles that we were searching for. The hike was not all bad—eagles were abundant in the area, and in one distant tree we could see a female perched near her nest with two large nestlings sitting in it. The passing storm system and sinking sun combined to create a rainbow that arched gracefully over the tree with the nest, resulting in one of the more memorable visions from the trip.

Rainbow over eagle's nest

Rainbow over eagle’s nest (tree is located at left one-third of photo).

By the time we got close enough to get a better photograph of the nest the female had departed, but the two nestlings could still be seen sitting in the nest. Sadly, the rather great effort we made to hike to the sand plain was not rewarded with any tiger beetles, and in fact the sand plain was little more than a narrow, already highly vegetated ridge that will probably be completely encroached before the tiger beetles ever find it.

Eagles in nest

Eagles in nest

Ellipsoptera lepida was not the only tiger beetle we were hoping to see on the trip. The Sandy Stream Tiger Beetle, E. macra, has also been recorded from this part of the state, and being members of the genus Ellipsoptera both species can be attracted to lights at night. In one last effort to see either of these species, we went to Watson Access on the Nishnabotna River, near its confluence with the Missouri River. Thunder clouds retreating to the east were illuminated by the low hanging sun to the west, creating spectacular views in both directions. Unfortunately, the insect collecting at the blacklights after sunset was not near as interesting as the sky views that preceded it.

Sunset lit thunderclouds

Sunset lit thunderclouds to the east…

Sunset on the Nishnabotna River

… and a bright colored sunset to the west on the Nishnabotna River, Atchison Co.

The next day we had to start making our way back to St. Louis. But while we were in the area we decided to check on the status of one of Missouri’s rarest tiger beetlesParvindela celeripes (formerly Cylindera celeripes)—the Swift Tiger Beetle. Not known to occur in Missouri until 2010, this tiny, flightless species is apparently restricted in the state to just three small remnants of loess hilltop prairie in Atchison and Holt Counties. We were close to one of these—Brickyard Hill Conservation Area (where Chris and I first discovered the beetles) so stopped by to see if adults were active and how abundant they were. To our great surprise, we found adults active almost immediately upon entering the site, and even more pleasantly surprising the adults were found not just in the two small areas of the remnant where we had seen them before but also in the altered pasture (planted with brome for forage) on the hillside below the remnant (foreground in photo below). This was significant in our minds, as it was the very first time we have observed this beetle in substantially altered habitat. The beetle was observed in relatively good numbers as well, bolstering our hopes that the beetles were capabale of persisting in these small areas and possibly utilized altered pastureland adjacent to the remnants.

Loess hilltop prairie

Brickyard Hill Conservation Area, loess hilltop prairie habitat for Parvindela celeripes

As we made our way back towards St. Louis, there was one more site created by the 1993 flood where we observed E. lepida in the early 2000s that we wanted to check out and see how the beetle was doing. In the years since we first came to Overton Bottoms, much of its perimeter has converted to cottonwood forest; however, a large central plain with open sand exposures and bunch grasses persists—presumably providing acceptable habitat for the species. Chris had seen a few beetles here in a brief visit last summer, but this time we saw no beetles despite a rather thorough search of the central plain. It seemed untenable to think that the beetles were no longer present, and we eventually decided (hoped) that the season was still too young (E. lepida is a summer species, and the season, to this point, had been rather cool and wet). The photos below show what the central plain looks like—both from the human (first photo) and the beetle (second photo) perspective. I resolved to return later in the month to see if our hunch was correct.

Sand plain (people view)

Big Muddy NFWR, Overton Bottoms, south unit, sand plain habitat for Ellipsoptera lepida

Sand plain (tiger beetle view)

A tiger beetle’s eye view of its sand plain habitat

It doesn’t happen often, but every now and then I get caught by rain while out in the field, and this time we got caught by a rather ominous thunderstorm. The rain didn’t really become too heavy until shortly before we reached the car, but the lightning was a constant concern that made bushwhacking back more than a mile through thick brush one of the more unnerving experiences that I’ve had to date.


Trying for Prionus—part 1
South-central Kansas (26–29 June 2015)

Last summer Jeff Huether and I traveled to several locations in eastern Colorado and New Mexico and western Oklahoma to find several Great Plains species of longhorned beetles in the genus Prionus using recently developed lures impregnated with prionic acid—a principal sex pheromone component for the genus. These lures are extraordinarily attractive to males of all species in the genus, and on that trip we managed to attract P. integerP. fissicornis, and P. heroicus and progress further in our eventual goal to collect all of the species in the genus for an eventual molecular phylogenetic analysis. One species that remains uncollected by pheromones (or any other method) is P. simplex, known only from the type specimen labeled simply “Ks.” A number of Prionus species in the Great Plains are associated with sand dune habitats, so we had the idea that maybe P. simplex could be found at the dunes near Medora—a popular historical collecting site, especially with the help of prionic acid lures. Perhaps a long shot, but there’s only one way to find out, so we contacted scarab specialist Mary Liz Jameson at Wichita State University, who graciously hosted Jeff, his son Mark Huether, and I for a day in the field at Sand Hills State Park. We didn’t expect Prionus to be active until dusk, during which time we planned to place lure-baited pitfall traps and also setup blacklights as another method for attracting the adult males (females don’t fly). Until then, we occupied ourselves with some day collecting—always interesting in dune habitats because of the unique sand-adapted flora and the often unusual insects associated with them.

"Medora" Dunes

Sand Hills State Park (“Medora Dunes”), Kansas

Milkweeds (genus Asclepias) are a favorite of mine, and I was stunned to see a yellow-flowered form of butterfly milkweed (A. tuberosus). Eventually I would see plants with flowers ranging from yellow to light orange to the more familiar dark orange that I know from southern Missouri. I checked the plants whenever I saw them for the presence of milkweed beetles, longhorned beetles in the genus Tetraopes (in Missouri the diminutive T. quinquemaculatus is most often associated with this plant), but saw none.

Asclepias tuberosus "yellow form"

Asclepias tuberosus “yellow form”

In the drier areas of the dunes, however, we began to see another milkweed that I recognized as sand milkweed (A. arenicola). I mentioned to Jeff and Mary Liz that a much rarer species of milkweed beetle, T. pilosus, was associated with this plant and to be on the lookout for it (I had found a single adult on this plant at a dune in western Oklahoma a few years back). Both the beetle and the plant are restricted to the Quaternary sandhills of the midwestern U.S., and within minutes of me telling them to be on the alert we found the first adult! During the course of the afternoon we found the species to be quite common in the area, always in association with A. arenicola, and I was happy to finally have a nice series of these beetles for my collection.

Tetraopes pilosus

Two Sandhills specialties—Tetraopes pilosus on Asclepias arenaria

Milkweed beetles weren’t the only insects associated with sand milkweed in the area—on several plants we saw Monarch butterfly larvae, some nearing completion of the larval stage as the one shown in the photo below. Monarchs have been in the news quite a bit lately as their overwintering populations show declines in recent years for reasons that are not fully understood but may be related to recent droughts diminishing availability of nectaring plants for migrating adults and reduction of available food plants as agricultural lands in the U.S. become increasingly efficient.

Danaus plexippus larva

Monarch butterfly (Danaus plexippus) larva on Asclepias arenaria

We found some other interesting insects such as the spectacular Plectrodera scalator, cottonwood borer, and the southern Great Plains specialty scarab, Strigoderma knausi, both of which I took the time to photograph with the big camera—separate posts on those species will appear in the future. Sadly, no Prionus came to either our lures or our lights that evening, but some interesting other insects were seen during the day and even at the lights despite unseasonably cool temperatures and a bright moon. I’ll post photographs of these insects, taken with the “big” camera, in the coming weeks. In the meantime, my thanks to Mary Liz for hosting us—I look forward to our next chance to spend some time in the field together.

Ted MacRae, Mark Huether, Jeff Huether, Mary Liz Jameson

Ted MacRae shows Mark Huether, Jeff Huether, and Mary Liz Jameson how to take a panoramic selfie.

The following day, Adam James Hefel—at the time a graduate student at Wichita State University—and I traveled northwest of Wichita to Quivira National Wildlife Refuge. Adam has recently become interested in tiger beetles and had observed several interesting species on the margins of the salt marshes at Quivira. Several of these species were on my “still to photograph” list (and one even on my “still to see” list), so I was happy to have access to some local knowledge to help me

Salt marsh

Quivira NWR – salt marsh habitat for halophilic tiger beetles

The saline flats of the central U.S. are hyperdiverse for tiger beetles. Adam has seen six species in the saling flats of Quivira, including the saline specialists Cicindela fulgida, C. wllistoni, Ellipsoptera nevadica knausi, Eunota togata, and E. circumpicta johnsonii (formerly Habroscelimorpha) (both red and green forms) and the ubiquitous Cicindelidia punctulata. We managed to find all of these except C. willistoni, which is a spring/fall species—unusual for a saline specialist, but the extreme heat of the day made them exceedingly difficult to approach (and virtually impossible to photograph).

Salt marsh

Tiger beetles are found most often in alkaline flats with sparse vegetation

Salt marsh

The wide open central flats are devoid of not only vegetation but tiger beetles (and life in general!).

Ever fascinated by the diversity of milkweeds to be found in the central U.S., an unfamiliar Asclepias growing in the higher, drier areas around a salt marsh caught my attention. Of course, I checked them for milkweed beetles and quickly found a number of Tetraopes tetraophthalmus individuals. John Oliver kindly identified the milkweed from my photos as Asclepias speciosa (showy milkweed), which does not occur in Missouri (hence the reason I was not familiar with it) but that gets common in the Great Plains and foothills of the Rocky Mountain.

Asclepias speciosa

Asclepias speciosa, or showy milkweed.

Asclepias speciosa

The specific epithet “specioosa” refers to the large, showy flowers.

Tiger beetles were not the only wildlife encountered on the saline flats. Killdeer and western snowy plover adults were abundant in the area, and we found this next with eggs along the lightly vegetated edge of a saline flat around Big Salt Marsh. Cheryl Miller suggested they are probably plover eggs, since killdeer don’t usually scrape out a cup or put debris around the eggs, while snowy plovers are known to nest on or near salt flats and frequently surround their eggs with twigs, small bones or other debris.

Western snowy plover (Charadrius nivosus) eggs

Western snowy plover (Charadrius nivosus) nest with eggs at the edge of an open flat

During the drive into the refuge, I noted several stands of large cottonwood (Populus deltoides), many of which were half- or completely dead. To some, these trees may be just ugly, half-dead trees. For me, however, they offer an opportunity to look for the gorgeous and rarely encountered Buprestis confluens, a species which I found for the first time just last year (not too far from hear in north-central Oklahoma). After getting our fill of tiger beetles, we drove to a parking lot surrounded by some of these trees, and even before I got out of the car I could see an adult B. confluens sitting on the trunk of a large, dead tree at the edge of the parking lot! I quickly secured the specimen, then spotted the half-dead tree in the photo below and walked towards it to look for more. I did not see any adults sitting on the trunk, but what I did see was truly incredible—two adults just beginning to emerge from the trunk! Waiting for one of the adults to emerge naturally (we “helped” the other one along) and photographing the sequence would occupy the next hour, but what an experience (and, of course, photos to come in a separate post).

Populus deltoides surrounded by hemp

This large, half-dead Populus deltoides “screams” Buprestis confluenta!

Wild hemp (Cannabis sativa)

Wild hemp (Cannabis sativa) fills the are with a pungent aroma.

After a break from the heat and something to eat in the nearest town (20 miles away), I returned to the cottonwoods, broke out the hatchet, and began chopping. Cottonwood is an amazingly soft wood compared to hardwoods such as oak and hickory, but dead cottonwood is still tough, and only after much effort did I manage to chop out two pupae (one of which later successfully emerged as an adult) and two unemerged adults, resulting in a nice, if still rather small, series of a species that until last year was not represented in my collection and until this time by only a single specimen.

Chopping Buprestis confluenta unemerged adults/pupae

Chopping Buprestis confluenta unemerged adults/pupae

Buprestis confluenta pupa

Exposed Buprestis confluenta pupa in its pupal chamber.

With the setting sun illuminating distant thunderclouds, I returned to the salt marshes to setup blacklights for the evening in hopes of attracting some of the tiger beetles that we had seen earlier in the day—not in attempt to collect more specimens, but rather to take advantage of their attraction to the lights and reduced skittishness in the cool, night air in an attempt to photograph them (I already had live specimens for studio photographs if necessary, but I prefer actual field photographs whenever possible). Eunota togata was not attracted to the lights, but both E. nevadica knausi and E. circumpicta johnsonii came to the lights in numbers (both red and green forms of the latter), and I succeeded in getting some real nice photographs as a result.

Thundercloud illuminated by setting sun

Thundercloud illuminated by setting sun

On the way back home, and again with the sun dropping close to the horizon, I stopped by Overton Bottoms again to look for Ellipsoptera lepida. Chris and I hadn’t see it here two weeks ago, and I was thinking (hoping) that it might have still a bit early in the season. This time I found them, and although they were not numerous and were apparently confined to the southernmost exposures of the central sand plain, they were still plentiful enough to allow me to get the field shots that I’ve wanted of this species for so long (and providing fodder for yet another future post). This species never seems to be encountered in great numbers, and although I have seen them on a number of occasions it always amazes me just how difficult they are to see!

Sand plain

Another pass through Overton Bottoms looking for Ellipsoptera lepida, this time with success!


Tryin’ for Prionus—part 2
South-central Kansas (11–12 July 2015)

Although our long-shot effort for Prionus simplex at the dunes near Medora, Kansas didn’t pan out, another species we hoped to see was P. debilis—a rather uncommonly collected species that occurs in the tallgrass prairies of the eastern Great Plains and, to our knowledge, had not yet been demonstrated to be attracted to prionic acid. I’d only seen this species once myself, some 30 years ago when I collected four males at lights near the southwestern edge of Missouri. As it happens, longtime cerambycid collector Dan Heffern grew up in P. debilis-land near Yates Center—not too far from where we were just a few weeks ago. When I mentioned my search for the species, he told me how commonly he used to see it around his home—especially around the 4th of July—and put me in contact with a friend who still lives in the area and has several tallgrass prairie remnants on his land. I made arrangements to visit the following weekend, and with prionic acid impregnated lures in the cooler and blacklights and sheets in the cargo area I set off. As I passed south through eastern Kansas I began to see nice tallgrass prairie remnants about 20 miles from my destination, so I took a chance and set a trap as a backup in case things didn’t pan out near Yates Center.

Trap baited with prionic acid lure

Trap baited with prionic acid lure

Things did pan out, however, although for a long time it did not appear they would. Dan’s friend kept me company while I placed a couple of traps and setup the blacklights, and for a couple of hours after sunset no beetles were seen (although we did enjoy good beer and better conversation). Just when I was ready to throw in the towel I saw a male crawling on the ground near one of the lights, and over the course of the next hour I found nearly a dozen males crawling on the ground in the general area around the lights but never actually at the lights. Interestingly, no males were actually seen in flight, nor were any attracted to the trap placed near one of the lights; however, after I took down the lights and checked the other trap there were five males in it. This likely represents the first demonstration of attraction to prionic acid by males P. debilis. I brought a couple of live males home for photography, taking this iPhone shot of a sleeping beetle in the meantime.

Prionus debilis "sleeping"

Prionus debilis “sleeping”in its cage after being taken near an ultraviolet light

One the way back home the next morning, success already “in the bag”, I stopped to check the trap I had placed the previous day. Filled with anticipation as I approached the trap, I was elated to find 21 males in the trap!

Prionus debilis

Prionus debilis in prionic acid lure-baited trap

The male antennae of this and other Prionus species show numerous adaptations that are all designed to maximize the ability to detect sex pheromones emitted into the air by females. They are both hyper-segmented and flabellate, providing maximum surface area for poriferous areas filled with chemical receptors. Larval habits for this species remain unknown, but Lingafelter (2007) states “Larvae may feed in living roots of primarily Quercus and Castanea, but also Vitis, Pyrus, and Zea mays.” I am not sure of the source of this information and don’t really believe it, either, as I think it much more likely that they feed on roots of bunch grasses such as bluestems (Andropogon spp.) and other grass species common in the tallgrass prairies.

Prionus debilis

Prionus debilis “looking” out over its tallgrass prairie habitat

Before reaching St. Louis, I decided to stop off at the last two known sites for Missouri’s endangered (possibly extirpated), disjunct, all-blue population of Eunota circumpicta johnsonii (Johnson’s Tiger Beetle). This didn’t go well—I first tried Blue Lick Conservation Area in Cooper County, where Chris Brown and I made the last known sighting of this beetle in the state 12 years ago at a salt spring about 500 yards further down the road in the photo below. I’m unsure what adaptations adults and larvae may have for surviving prolonged flooding, but it certainly cannot be helpful for the beetle. I then visited nearby Boone’s Lick State Historic Site in Howard County, and while the site was not flooded the two small areas where salt springs were located during our survey were even more heavily encroached by vegetation than before. Not only were no beetles seen, there did not even seem to be the slightest possibility that beetles could occur there. I keep hoping that the beetle will, someday, be seen again, but in reality I think I am just having trouble accepting the fact that I may have actually witnessed the extirpation of this incredibly beautiful and unusual population of beetles.

Flooded road leading to saline lick tiger beetle habitat

Flooded road leading to last known Missouri site for Eunota circumpicta johnsonii


Chillin’ after work
Sand Prairie – Scrub Oak Preserve, central Illinois (15 July 2015)

By the time mid-July rolls along, temperatures are not the only thing heating up. My travel for work also reaches a fever pitch as I begin traveling to research plots in Illinois and Tennessee every  two weeks. It takes three days to make the +1,000-mile round trip, which means that I have two nights and an occasional afternoon stop to collect insects—much more fun than checking into hotel right after work, eating dinner at Applebee’s, and spending the evening switching back and forth between FOX and MSNBC to see who can make the most outrageous statement because IFC just isn’t offered. One of my favorite spots along this route to set up a blacklight is Sand Prairie – Scrub Oak Preserve in Mason County, Illinois. Nothing too spectacular showed up at the lights there this season, but as they say a bad day (or night) of bug collecting is better than a good day of just about anything else.

Ted MacRae at the blacklight

Calling all insects—the blacklight awaits you!

On this particular night a number of hawk moths (family Sphingidae) came to the lights, among the prettier of which included this Paonias excaecata (blinded sphinx) (kindly identified by Robert Velten).

Blinded Sphinx, Paonias excaecata

Paonias excaecata (blinded sphinx) | Sand Prairie – Scrub Oak Preserve, Mason Co., Illinois


More chillin’ after work
Pinewoods Lake, southeast Missouri (28 July 2015)

Another species of Prionus that I hadn’t seen for many years was P. pocularis, a species found in the pineywoods across the southeastern U.S. and, thus, reaching its northwestern distributional limits in the shortleaf pine (Pinus echinata) forests of the Ozark Highlands in southern Missouri. Like P. debilis, I had only seen this species once before—two males at a blacklight at Pinewoods Lake National Forest Recreation Area in Carter County many years ago. Unlike P. debilis, however, these were seen later in summer, as were a few other specimens known from the state. That being the case, I decided to try the prionic acid lures at Pinewoods Lake while traveling back up from Tennessee. I arrived at the lake shortly before sunset and, after getting the traps put out and the lights setup, had the chance to look out over the lake and its surrounding forests where I had collected so many insects back in the 1980s as a young, eager, budding coleopterist.

Pinewoods Lake at dusk

Pinewoods Lake at dusk

Quite some time passed and no Prionus beetles were seen at the light or in the trap (but several other longhorned beetles did occur). Recalling my experience with P. debilis in Kansas a few weeks earlier, I remained hopeful, and eventually my optimism was rewarded when I found this single male floating in the trap’s ethanol preservative. Curiously, it would be the only male seen that night, although several individuals of the related and much more common P. imbricornis were attracted to the prionic acid lures.

Prionus pocularis

Prionus pocularis in prionic acid lure-baited trap | Pinewoods Lake, Carter Co., Missouri

Several other insects did come to the blacklights, among the more photogenic being this underwing moth (genus Catacola, family Noctuidae) identified by Mathew L. Brust as Catocala neogama.

Catocala neogama

Catocala neogama at ultraviolet light | Pinewoods Lake, Carter Co., Missouri

Even more photogenic than underwings are royal moths (family Saturniidae), including this imperial moth, Eacles imperialis.

Eacles imperialis (imperial moth)

Eacles imperialis (imperial moth) at ultraviolet light | Pinewoods Lake, Carter Co., Missouri

Among the longhorned beetles I mentioned that did come to the lights was this Orthosoma brunneum (brown prionid). This species is closely related to prionid beetles (both are in the subfamily Prioninae). However, it is not a member of the genus Prionus, and, thus, is not attracted to prionic acid. It is perhaps no coincidence that males of this species do not exhibit the hypersegmentation and flabellate modifications of their antennae possessed by males in the genus Prionus, though they may still rely on sex pheromones for locating females.

Orthosoma brunneum

Orthosoma brunneum at ultraviolet light | Pinewoods Lake, Carter Co., Missouri

Even spiders were coming to the blacklights, perhaps attracted not by the light itself but by the ready availability of potential prey.

Black widow spider (Latrodectus mactans) female

Latrodectus mactans (black widow) at ultraviolet light | Pinewoods Lake, Carter Co., Missouri


Cicadamania!
White River Hills region, southwest Missouri (1–2 August 2015)

Although I had succeeded in finding Prionus pocularis earlier in the week at Pinewoods Lake, I wasn’t satisfied with having found just a single individual. I had nothing on the calendar the following weekend, so I decided to make a run down to one of my favorite areas in all of Missouri—the White River Hills of extreme southwest Missouri. The only other record of the species in Missouri is from that area, with its abundance of shortleaf pine forests (the species breeds in decadent pines), and I though how nice it would be to find more individuals in a part of the state that I love so much. The plan was to drive down, set a prionic acid trap or two once I got into the pine forests of the area, and then find a good spot to setup some blacklights with one more prionic acid trap that I could monitor. The plan was executed perfectly, and I ended up setting up the lights on a ridge just south of Roaring River State Park; however, the beetles never came. Nevertheless, like I said earlier a bad day/night of bug collecting is still better than just about anything else, and there was plenty at and near the lights to keep the night interesting. Once was this tiny walkingstick nymph that I found hanging out at the tip of a blade of grass. I was intrigued by the rather peculiar position adopted by the resting animal, with its forelegs and antennae extended straight out in front of the body with their tips resting on the grass blade.

Undet. juvenile walkingstick

Undetermined walkingstick nymph | Mark Twain N.F., Barry Co., Missouri

One thing I love about blacklighting for insects is the sounds of the night—katydids fill the black night with raspy calls while Whip-Poor-Wills and their country cousins the Poor-Will’s-Widows hoot and cluck in the distance.

Undet. adult katydid?

Undetermined katydid | Mark Twain N.F., Barry Co., Missouri

As I was photographing the walkingstick, I felt something crawling on my neck. After many years of doing this, I’ve learned not to freak out and slap wildly at something crawling on my neck, because 1) more often than not it is something interesting and 2) even if it isn’t particularly interesting it’s almost never capable of biting or stinging. Still, I don’t want to just grab it unseen or pin it against my neck—instead I kind of “scoop” it away with my fingers and toss it onto the ground beside me in one swift, assertive movement. This night’s mystery neck crawler was about as interesting as they get—Dynastes tityus (eastern Hercules beetle), the largest beetle in eastern North America. This one is a female by virtue of its lack of any horns on the head and pronotum.

Dynastes tityus female

Female Dynastes tityus (eastern Hercules beetle) | Mark Twain N.F., Barry Co., Missouri

After pulling the lights down for the night, I drove to Mincy Conservation Area, one of the many dolomite glades in the area in the next county over and one that I had not visited for some time. There are no hotels in the area, and my bones are a little too old to be sleeping on the ground, so I just pulled into the campground, took off my shoes, changed into PJs, and laid the driver’s seat all the way back for a surprisingly comfortable night’s sleep. My frugalness would have its reward, although I did not know it until I awoke early the next morning to a hauntingly beautiful fog. I’d never seen the glades in such manner—so serene. I knew the rising sun would quickly burn off the fog and and the moment would be lost if I didn’t act quickly, so I grabbed both big camera and iPhone and, put on some shoes (didn’t bother with changing out of my PJs), and walked the glade taking as many photos as I could. While the quality of the iPhone snaps doesn’t compare with those taken with the big camera, they nevertheless convey the quiet beauty of the glade.

Morning fog over the dolomite glade

Morning fog over the dolomite glade | Mincy Conservation Area, Taney Co., Missouri

Missouri coneflower (Rudbeckia missouriensis) is a characteristic plant of limestone and dolomite glades in the Ozark Highlands of southern Missouri.

Morning fog over the dolomite glade

Missouri coneflower (Rudbeckia missouriensis) | Mincy Conservation Area, Taney Co., Missouri

Morning dew makes spider webs abundantly conspicuous.

Morning fog on a spider web

Morning fog on a spider web | Mincy Conservation Area, Taney Co., Missouri

Eventually the rising sun began to burn through the cool, damp fog, portending another day of searing heat in the xeric glade landscape.

Morning fog over the dolomite glade

The rising sun begins to burn off the fog | Mincy Conservation Area, Taney Co., Missouri

Heading back to my car as temperatures began to rise quickly, I was struck by the cacophony of cicadas that were already getting into high gear with their droning buzz calls. As I passed underneath one particular tree I noticed the song was coming from a branch very near my head. I like cicadas, but I was there to look for the spectacular Plinthocoelium suaveolens (bumelia borer), a glade species associated with gum bumelia (Sideroxylon lanuginosum). Had it been the song of a “normal” cicada like Neotibicen lyricen (lyric cicada) or N. pruinosus (scissor grinder cicada) I would have paid it no mind. It was, instead, unfamiliar and distinctive, and when I searched the branches above me I recognized the beautiful insect responsible for the call as Neotibicen superbus (superb cicada), a southwest Missouri specialty—sumptuous lime-green above and bright white pruinose beneath. I had not seen this spectacular species since the mid 1980s (most of my visits to the area have been in the spring or the fall rather than high summer), so I spent the next couple of hours attempting to photograph an individual in situ with the big camera. This is much, much easier said than done—the bulging eyes of cicadas give them exceptional vision, and they are very skittish and quick to take flight. I knew I had the iPhone photo shown below if all else failed, and for some time every individual I tried to approach ended up fluttering off with a screech before I could even compose a shot, much less press the shutter. Persistence paid off, however, and I eventually succeeded in locating, approaching, and photographing an unusually calm female resting at chest height on the trunk of a persimmon tree. Along the way I checked the gum bumelia trees hoping to spot one of the beautiful longhorned beetles associated with that tree, but none were seen.

Neotibicen superbus

Neotibicen superbus

It was already high noon by the time I finished up at the Mincy glades, so I began to retrace my steps to check the prionic acid traps that I had set out the day before. Along the way I stopped by Chute Ridge Glade Natural Area in Roaring River State Park, another place where I have seen bumelia borers, so I stopped to try my luck there before continuing on to pick up the traps. Again, none were seen, but in addition to numerous individuals of N. superbus I found another species of cicada, still undetermined by more robust and nearly blackish and with a throatier call that sounding a bit like a machine gun (or table saw hitting a nail!). Despite the lack of bumelia borers, I enjoyed my time on the glade immensely and eventually had to call it quits if I was to get to all of my traps before nightfall.

IMG_6373_enh_1230x720


Still more chillin’ after work
Pinewoods Lake, southeast Missouri (11 August 2015)

Two attempts at Prionus pocularis in the past two weeks had netted me but a single specimen—this species was becoming my summer nemesis. So when I found myself back in Tennessee for field trial work and the timing still right I decided to spend the evening at Pinewoods Lake once again before heading back to St. Louis and see if the third time would be a charm. I found a new restaurant in the tiny nearby town of Ellsinore, and the dinner special that evening was fried catfish—hoo boy! My belly was in a good place after that, filling me with optimism that I would have success tonight. I got to the lake at dusk, quick setup the blacklights and put the prionic acid traps in place, and waited for the bugs to come in.

Pinewoods Lake at dusk

Pinewoods Lake at dusk, again!

The evening’s first visitor to the lights was a parandrine cerambycid—Neandra brunnea. Believe it or not, this was the first time I have ever seen the species alive (once before finding a dead specimen in a Japanese beetle trap waaaay back in the mid-1980s!)—a pretty nice find. In fact, Pinewoods Lake produced a number of good finds during those days back in the 1980s when I was collecting here regularly—longhorned beetles such as Acanthocinus nodosus, Enaphalodes hispicornis, and the aforementioned Prionus pocularis, male Lucanus elaphus stage beetles, the jewel beetle Dicerca pugionata on ninebark in the draws, and the seldom seen tiger beetle Apterodela unipunctata (formerly Cylindera unipunctata), just to name a few.

Neandra brunnea

Neandra brunnea | Mark Twain N.F., Pinewods Lake, Carter Co., Missouri

Seeing N. brunnea and the prospects of collecting P. pocularis weren’t the only things putting me in a good mood…

Blacklighting w/ beer

Blacklighting is better with beer!

My optimism, unfortunately, would eventually prove to be unfounded, as not only did P. pocularis never show up—either at the blacklights or the prionic acid traps, no other beetles showed up as well, longhorned or otherwise. When that happens, I have no choice but to start paying attention to other insects that show up at the lights. It was slim pickings on this night for some reason, making this already striking moth identified by Alex Harman as Panthea furcilla  (tufted white pine caterpillar or eastern panthea) in the family Noctuidae stand out even more so. 

Panthea furcilla

Panthea furcilla | Mark Twain N.F., Pinewoods Lake, Carter Co., Missouri

While walking between the blacklights and the prionic acid traps, something suspended between two trees caught my eye. I recognized it quickly as some type of orb weaver spider (family Araneidae), but I couldn’t exactly figure out exactly what was going on until I took a closer look and saw that there were actually two spiders! I’d never seen orb weaver courtship before, so I excitedly took a few quick shots with the iPhone and then hurried back to the car to get the big camera.

Neoscona sp. courtship

Be very, very careful boy!

Sadly, the male had already departed by the time I got back, so the quick iPhone photos I took are the only record I have of that encounter. Still, I got some good photos of just the female with the big camera, along with the quicker, dirtier iPhone shots—one of which is shown below. According to Eric Eaton these are likely a species in the genus Neoscona.

Neoscona sp.

Neoscona sp. | Mark Twain N.F., Pinewoods Lake, Carter Co., Missouri


Checking out a fen
Coonville Creek Natural Area, southeast Missouri (3 September 2015)

On yet another trip back to St. Louis from Tennessee, I made a spur-of-the-moment decision to visit Coonville Creek Natural Area in St. Francois State Park, an area I hadn’t seen in nearly 30 years and the outstanding feature being the calcareous wet meadow, or “fen”, that dominates the upper reaches of the creek drainage. Fen soils are constantly saturated, a result of groundwater from surrounding hills percolating through porous dolomite bedrock before hitting a resistant layer (in this case, sandstone) and seeping out onto the lower slopes. Constantly saturated soils and occasional fires (at least historically) have kept the fen open and treeless, with the cool groundwater allowing “glacial relicts” (i.e., plants common when glaciers covered the area) to persist. 

Calcareous wet meadow

Calcareous wet meadow | Coonville Creek, St. Francois State Park, St. Francois Co., Missouri

I saw a few Cicindela splendida (Splendid Tiger Beetles) on the rocky, clay 2-track leading to the area—a sure sign that fall was just around the corner, a female cicada on herbaceous vegetation in the fen (small, I think it’s not a species of Neotibicen), and a huge, fecund black and yellow garden spider (Argiope aurantia)—I love seeing the latter at this time of year when they have grown to their largest and the females are full of eggs. In reality, however, this visit turned into more of a botanical than an insect collecting experience. Insect activity in general was low, and my attention drifted instead to the diversity of wildflowers that were present on the fen—most new to me. False dragonhead (Physostegia virginiana), great blue lobelia (Lobelia siphilitica), and Spiranthes lacera (slender ladies’-tresses orchid)—its tiny white blossoms spiraling up the leafless spike were the most interesting, resulting in lots of time spent looking at them through the big camera.

Argiope aurantia

Argiope aurantia | Coonville Creek, St. Francois Co., Missouri


The always exciting amorpha borer
Otter Slough Conservation Area, southeast Missouri (23 September 2015)

As the dog-days of summer gave way to bright, blue skies and crisp, fall air, a distinctive insect fauna takes advantage of the explosion of goldenrod that blooms across a landscape morphing from shades of green to orange, yellow, and tawny. Many of these insects are widespread and super-abundant—soldier beetles, tachinid flies, bumble and honey bees, and scoliid, tiphiid, and vespid wasps are among the most conspicuous. Megacyllene robiniae, longhorned beetles commonly called locust borers  are also common on goldenrod during fall, but much less common is a closely related species that breeds in false indigo bush (Amorpha fruticosa)—Megacyllene decora, or the amorpha borer. I’ve seen this species several times, yet uncommonly enough that I still target it when I get the chance. One such place is Otter Slough Conservation Area—yet another interesting place along the way between Tennessee and St. Louis. On one of my final trips back this way I stopped by to see if these spectacular beetles would be out. My attention was first caught by egrets congregating in a mud flat exposed by recent dry weather. However, they were not what I was looking for.

Egrets congregating on mud flats

Egrets congregating on mud flats | Otter Slough, Stoddard Co., Missouri

There is no shortage of interesting insects to look at as I begin scanning the goldenrod flowers growing along the roadsides and around the edges of the shallow pools managed for fishing and shore birds. A fat, female Stagmomantis carolina (Carolina mantis) sat on one of the first inflorescences that I checked, but she also was not what I was looking for.

Undet. mantid

Stagmomantis carolina | Otter Slough, Stoddard Co., Missouri

After a bit of searching, I found what I was looking for! Over the course of the next two hours (all the time I had left before sundown) I would a total of three adults on goldenrod flowers at three disparate locations within the area—again not very many, making those that I did see a real treat.

Megacyllene decora

Megacyllene decora on goldenrod | Otter Slough, Stoddard Co., Missouri

As dusk fell over the area, insects began bedding down for the night. I was lucky to find the last amorpha borer in the dwindling light as it bedded down next to a bumblebee—perhaps the likely model for the beetle apparent mimetic coloration.

Megacyllene decora

Megacyllene decora and a bumble bee bed down together | Otter Slough, Stoddard Co., Missouri

The sun sinking over the horizon behind the wetlands put an end to the collecting, not only for the day but for the season, at least here in Missouri and surrounding states. It would not be the final day of collecting for me, however, as I managed to scrape together some free time amidst my hectic travel schedule and spend a week in eastern Texas for the Annual Fall Tiger Beetle Hunt. I’ll save that trip for another report and close this one out here, but be on the lookout for higher quality photos over the coming months of the really interesting insects that I encountered over this past season. Let me also say that if you’re still reading at this point, you have my deepest admiration for having the persistence to wade through all 8,376 of the words contained within this post!

Dusk over Plover Pond

Sunset over Plover Pond | Otter Slough, Stoddard Co., Missouri

© Ted C. MacRae 2015

Spring beetles on Coreopsis flowers

Abby Lee, Ryan Fairbanks, Stephen Penn atop a rhyolite glades

The WGNSS Entomology Group takes in the view of rhyolite glades from atop Hughes Mountain.

Each spring the Entomology Group of the Webster Groves Nature Study Society takes a field trip to one of the many natural areas outside of the St. Louis area. This year the destination was Hughes Mountain Natural Area, about 75 miles SSW of St. Louis in Washington Co. I especially looked forward to going there this spring, as my last visit to the area was close to 20 years ago. Despite the long absence, I vividly recalled the spectacular vistas from atop the mountain of rhyolite and the diversity of unique plants and insects in the igneous glades that flanked its slopes. When we arrived, we found the glades ablaze with spring wildflowers in full bloom, the most prominent of which was lance-leaved coreopsis (Coreopsis lanceolata). As one of the so-called “yellow composites”, coreopsis is a favored source of pollen and nectar for a variety of insects, including beetles and especially the jewel beetles that I find so interesting.

Acmaeodera neglecta

Acmaeodera neglecta Fall, 1899

Species in the genus Acmaeodera are incredibly diverse in the southwestern U.S. (nearly half of the ~150 species/subspecies known from the U.S. occur in Arizona), where they are usually encountered on a variety of flowers. It is my opinion that the adult beetles mimic small bees, especially in flight by virtue of their fused elytra that do not separate during flight as in most other beetles and thus results in a profile resembling that of a small sweat bee (family Halictidae). The diversity of Acmaeodera drops off considerably in the eastern U.S., with only three species occurring broadly in the area. Missouri is a bit luckier than most eastern states, as two additional species found primarily in the south-central U.S. also occur here (MacRae 1991). One of these is Acmaeodera neglecta Fall, 1899. This tiny species (adults measure only 4–6 mm in length) is very similar to the much more common and widespread A. tubulus (Fabricius, 1801) (see photos here), and in fact its resemblance to that species is so great that it remained unreported from Missouri until Nelson (1987) recognized it among material that I had collected and sent to him during my early collecting days. Acmaeodera neglecta can be distinguished from A. tubulus by the elytra with slightly larger punctures and duller surface and the spots usually longitudinally coalesced into an irregular “C”-shaped marking on each side. I find this species most often in glade habitats.

Acmaeodera ornata

Acmaeodera ornata (Fabricius, 1775)

Acmaeodera ornata (Fabricius, 1775) is more widespread than A. neglecta (although not nearly so commonly encountered as A. tubulus). This handsome species is distinctly larger than A. tubulus and A. neglecta, usually around 8-11 mm in length, and has a broader, more flattened appearance with a distinct triangular depression on the pronotum. The elytra have a bluish cast rather than the bronzy sheen of A. tubulus and A. neglecta, and the spots on the elytra are smaller, more numerous, and more of a creamy rather than yellow color. No other species in the eastern U.S. can be confused with it, although there is a very similar species (A. ornatoides Barr, 1972) that occurs in Oklahoma and Texas. I have encountered this species numerous times on a variety of flowers in Missouri but have never managed to rear it, and in fact larval hosts remain unknown with the exception of one very old (and unreliable) report of the species breeding in hickory (Carya) and black-locust (Robinia).

Valgus canaliculatus

Valgus canaliculatus (Olivier, 1789)

As a general rule, beetles in the family Scarabaeidae don’t visit flowers—species in the subfamily Cetoniinae being a significant exception. This tiny representative of the subfamily, Valgus canaliculatus (Olivier, 1789), is no larger than the Acmaeodera neglecta adult above by length, although the body is broader and strongly flattened. This species is a representative of the tribe Valgini, one of only two tribes in the family that possess dorsal and ventral scale-like setae (the unrelated tribe Hopliini, or monkey beetles, being the other) (Jameson & Swoboda 2005). It has been suggested that the setae might play a role in crysis or adaptive coloration, and even more interesting is the association of most New World species with termites. Eggs are laid in termite galleries and the larvae feed on the wood within the galleries, but it remains unclear whether the termophily is obligatory or the beetles are simply taking advantage of the stable environment and accessible food source offered by termite colonies. Like other species in the subfamily, the adults are fond of flowers; however, only male valgines visit flowers, using specially modified, brush-like mouthparts to lap up nectar. As far as has been determined, the males do not feed on pollen.

Valgus canaliculatus

Note the flattened, scale-like setae covering both the dorsal and ventral surfaces as well as the legs.

REFERENCES:

Fall, H. C.  1899. Synonpsis of the species of Acmaeodera of America, north of Mexico. Journal of the New York Entomological Society 7(1):1–37 [pdf].

Jameson, M. L. & K. A. Swoboda. 2005. Synopsis of scarab beetle tribe Valgini (Coleoptera: Scarabaeidae: Cetoniinae) in the New World. Annals of the Entomological Society of America 98(5):658–672 [pdf].

MacRae, T. C. 1991. The Buprestidae (Coleoptera) of Missouri. Insecta Mundi5(2):101–126 [pdf].

Nelson, G. H. 1987. Additional notes on the biology and distribution of Buprestidae (Coleoptera) in North America, II.   The Coleopterists Bulletin 41(1):57–65 [pdf].

© Ted C. MacRae 2015