Stalking tigers in Argentina

Brasiella argentata

Brasiella argentata | banks of Rio Paraná, Corrrientes, Argentina

Most of you know that I have spent a lot of time in Argentina over the years, and while most of my time there has been for work I have had a fair bit of opportunity to collect insects as well. This includes tiger beetles, and in fact I recall one trip some years ago during which I spent the better part of a week chasing tigers in northeastern Argentina around Corrientes and west into Chaco Province. I think I collected maybe a dozen species or so—some in great numbers and others not, and with the help of tiger beetle expert David Brzoska I’ve managed to put names on most of the material. Despite this, however, I’ve never actually posted any photos of tiger beetles from Argentina here on BitB. I guess the main reason for this is that my efforts to photograph tiger beetles is still a relatively new pursuit (compared to the time that I’ve been going to Argentina), and most of my luck with tiger beetles in Argentina has preceded my time with a camera. The other reason for the delay is that, while I have managed to photograph a few tiger beetles in Argentina, I’ve only recently been able to determine their identity (and you all know how I dislike posting photos of unidentified insects). Well, time to change that, and for this post I am featuring the very first tiger beetle that I was able to photograph in Argentina—the aptly named Brasiella argentata.

Banks of Rio Paraná, habitat for Brasiella argentata.

Banks of Rio Paraná, habitat for Brasiella argentata.

The individuals in this post were photographed on 1 April 2011 during the early part of a week-long visit to Corrientes and neighboring Chaco Province in northern Argentina. Remember, this is the southern hemisphere, so early April is way late in the season and, in this part of Argentina, typically on the back end of a very long dry period. Still, it is far enough north to be borderline subtropical climate, and with the stifling heat it could, for all intents and purposes, have been the middle of summer. I knew tiger beetles could be found along the banks of the Rio Paraná, as I had collected them there during my trip some 10 years previous, so in late morning of my first day after arrival in the city I kitted up and walked down to the river. Sand and mud beaches are not plentiful along the mostly rocky shoreline, and I was perturbed to see the area where I had collected during my last visit had since been “developed.” Nevertheless, I found promising-looking habitat a short distance further north and walked to its moister edges (photo above). I saw nothing at first, but eventually I came to a small, moist drainage where the sand was mixed with more mud, and there they were! It took a little bit of looking, as this species is quite small—adults average only ~7 mm in length, and despite the impression you may get from these photos they are well camouflaged to match the color of the wet, muddy sand and, thus, difficult to see before they take flight and again after they land.

An individual sits long enough to allow a few close, lateral profile shots.

Brasiella argentata is one of the most widely distributed Neotropical species of tiger beetles, occurring from Panama and the West Indies south to Peru and Argentina (Cassola & Pearson 2001). Numerous subspecies have been described from throughout its range, but in truth it seems to actually be a “species swarm” comprised of multiple species, many of which can only be determined by examination of characters contained within the male aedeagus (Sumlin 1979). The genus Brasiella itself, like many others, was until recently considered to be a subgenus of Cicindela, but the distinctiveness of these mostly small (Pearson et al. 2007 refer to them as “Little Tiger Beetles”), cursorial (running) beetles has been recognized in most of the more recent comprehensive treatises (e.g., Cassola & Pearson 2001, Erwin & Pearson 2008). Unlike most of its related genera (subtribe Cicindelina), Brasiella is almost exclusively Neotropical in distribution—only one of its 45 species, B. wickhami, reaches the U.S. in southern Arizona (Pearson et al. 2007).

Brasiella argentata

The only photo I managed looking towards the front of an individual.

If their smallness must be recognized, so must their running abilities. This was one of the most difficult species I’ve ever attempted to photograph, and with those difficulties added to the heat of the day and its “perfect storm” habitat it’s a wonder I got any photographs at all. It was a good half hour before I even got the first photo (top), and another hour and a half of effort was required before I managed to get a selection of photos that included a good, close lateral profile shot (middle). As is often the case with very wary tiger beetles, frontal portraits were almost impossible due to their persistent efforts to flee, so I feel fortunate to have managed the last photo. It’s not as close as I typically like to get, but I am pleased with the composition and also the fact that it shows the species’ truncate labrum—a key character.

REFERENCES:

Cassola, F. & D. L. Pearson. 2001. Neotropical tiger beetles (Coleoptera: Cicindelidae): Checklist and biogeography. Biota Colombiana 2:3–24 [pdf].

Erwin, T. L. & D. L. Pearson. 2008. A Treatise on the Western Hemisphere Caraboidea (Coleoptera). Their classification, distributions, and ways of life. Volume II (Carabidae-Nebriiformes 2-Cicindelitae). Pensoft Series Faunistica 84. Pensoft Publishers, Sofia, 400 pp [Amazon description, book review].

Pearson, D. L., C. B. Knisley & C. J. Kazilek. 2006. A Field Guide to the Tiger Beetles of the United States and Canada. Oxford University Press, New York, 227 pp. [Oxford description].

Sumlin, W. D., III 1979. A brief review of the genus Cicindela of Argentina (Coleoptera: Cicindelidae). Journal of the New York Entomological Society 87(2):98–117 [JSTOR].

Copyright Ted C. MacRae 2013

Party on a pin oak

In September 2012 while collecting in western Oklahoma (Weatherford) I came across this interesting scene. It had been exceedingly dry in the area, and because of this few insects were out and about in the small city park that I stopped by to check for the presence of tiger beetles. I had nearly completed my circuit of the park when I came upon a moderate-sized pin oak (Quercus palustris) tree and noticed something on the lower trunk:

Six insect species representing five families in four orders share a sap flow.

Six insect species representing five families in four orders share a sap flow on the trunk of a pin oak.

No less than six insect species representing four orders were seen all huddled together at a darkly stained sap flow. This could be the result of slime flux, a bacterial disease that usually affects deciduous hardwoods that are under stress and results in darkly stained weeps on the trunk that are known to be attractive to a variety of insects. At the center sat a green June beetle (Cotinis nitida) and three bumble flower beetles (Euphoria inda)—all in the family Scarabaeidae (subfamily Cetoniinae). Covering the scarab beetles were half a dozen Texas Tawny Emperor (Asterocampa clyton texana) butterflies (family Nymphalidae, or Brushfooted Butterflies), and milling around the perimeter was a velvet ant (Dasymutilla creusa, I believe) in the family Mutillidae, an apparent flesh fly (family Sarcophagidae), and a true ant (family Formicidae). I guess this would be the equivalent to a watering hole in Africa with a lion, a hyena, a baboon, three vervet monkeys and six zebras all crouched shoulder-to-shoulder at its edge.

Euphoria sepulchralis feeds on a sap flow higher up on the trunk.

Euphoria sepulchralis feeds on a sap flow higher up on the trunk.

Further up on the trunk, yet another species of scarab beetle, a dark flower scarab (Euphoria sepulchralis) was found feeding on a smaller sap ooze. Unlike the diverse aggregation of insects on the lower ooze, this guy had managed to keep the ooze all to himself.

Cotinus nitidus | Weatherford, Oklahoma

Cotinis nitida | Weatherford, Oklahoma

Green June beetles, especially, are known for their feeding on sap oozes. The beetles are actually attracted to the odors caused by fermentation of the sap rather than the sap itself. It has been reported that the presence of alcohol in fermenting sap can affect the behaviour of insects that feed upon it, causing them to act “stupid and lethargic.” I did not see any such behavior, but I did notice that the insects were not at all skittish and loath to leave the sap.

Copyright © Ted C. MacRae 2013

A belated Happy Birthday

It seems that November 24th came and went without me even realizing that BitB turned six years old that day! Six years—wow, has it really been that long? I guess forgetting birthdays officially puts me in the old-timer camp (both as a person and as a blogger). No fanfare or celebration. Instead, I blithely wrote my 778th post (Q: How do you photograph cactus beetles?) and carried on as usual.

I guess it’s too late now to make a big deal of it, but I will make the observation that November 2013, with its 15 posts, was one of my heaviest blogging months ever (the most since 18 posts in December 2012 and the overall high of 21 in April 2010). This may come as a surprise to those who have heard me grouse periodically about the decline of blogging, both of my blog in particular and as a platform in general. It’s a different world than it was when I started BitB—Twitter and Facebook have taken over much of the social interaction that used to take place on blogs, relegating the latter primarily to satisfying a small but persistent niche demand for long-content. Throughout the course of these changes, however, motivation to blog still comes to me consistently and often. Mostly it seems to be an internal need to express myself, but the occasional and very much appreciated feedback in the form of comments and emails also helps. So, with that, thank you for the past six years, and here’s looking at the next six!

Enough blather—here are a few colorful net-winged beetles in the genus Calopteron (family Lycidae) to help with the celebration. They were photographed in northern Argentina (Chaco Province) in April 2012 while visiting flowers of Chilean goldenrod (Solidago chilensis). I’m not sure if they represent more than one species, as the taxonomy of the genus in the Neotropics appears to be very poorly known at this time—if so it would seem there exists in this area a mimicry complex that is ripe for study.

Calopteron sp. on flowers of Solidago chilensis| Chaco Province, Argentina

Calopteron sp. on flowers of Solidago chilensis | Chaco Province, Argentina

Calopteron sp. on flowers of Solidago chilensis| Chaco Province, Argentina

Calopteron sp. on flowers of Solidago chilensis | Chaco Province, Argentina

Calopteron sp. on flowers of Solidago chilensis| Chaco Province, Argentina

Calopteron sp. on flowers of Solidago chilensis | Chaco Province, Argentina

Copyright © Ted C. MacRae 2013

Pedantic Sunday: Blister beetles don’t suck

Nemognatha cribraria cribraria on flower head Chrysothamnus viscidiflorus | Millard Co., Utah

Nemognatha cribraria cribraria on flowers of Chrysothamnus viscidiflorus | Millard Co., Utah

The beetle featured in today’s photo is the blister beetle (family Meloidae), Nemognatha cribraria cribraria. The genus Nemognatha and its relatives in the subfamily Nemognathinae are distinctive due to the greatly elongated adult mouthparts that are modified for feeding on flowers. Specifically, parts of the maxillae, or second pair of mouthparts (behind the mandibles) are elongated to allow access to nectar in flowers with deep corollas, while the fairly standard-issue chewing mandibles are used for feeding on pollen. As pointed out by Enns (1956) in his revision of the North American members of the genus, the length of the maxillae seems to be related to the particular kind of flower preferred for feeding by the various nemognathine species, with species exhibiting longer maxillae adapted to feeding on flowers with deeper corollas. In the photo above, the elongated maxillae can be seen tucked underneath the adult and appear to be nearly half the length of the body—other species in the genus have the maxillae as long as the body, or in the case of a Mexican species (N. chrysomeloides) even longer than the body (Enns 1956).

The proboscis-like mouthparts of nemognathine blister beetles are often depicted in entomological texts as an amazing example of sucking mouthparts in Coleoptera, the vast majority of which possess strictly chewing mouthparts. Borrer et al. 1976, White 1983, Downie & Arnett 1996, and Pinto & Bologna 2002 all mention that the mouthparts are modified into an elongated proboscis for “sucking” nectar, and it has been suggested that nectar uptake occurs through a median food canal, formed by concavities on the inner surfaces when the two structures are locked together into a functional unit. However, Wilhemi & Krenn (2012) used scanning electron microscopy and micro computerized tomography to study the elongated mouthparts of three meloid genera: Nemognatha and Gnathium and Leptopalpus. They demonstrated that neither the elongated galeae of Nemognatha and Gnathium nor the elongated maxillary palpi of Leptopalpus formed a median food canal through which nectar is sucked. Furthermore, the filiform galeae of Nemognatha and Gnathium are densely covered with long bristles, suggesting that nectar uptake in these two genera is accomplished by capillary action along the bristles of the proboscis. In all three genera nectar transport is likely aided by musculature around the mouth.

REFERENCES:

Borrer, D. J., D. M. DeLong & C. A. Triplehorn. 1976. An Introduction to the Study of Insects, Fourth Edition. Holt, Rinehart and Winston, xii + 852 pp.

Downie, N. M. & R. H. Arnett, Jr. (Eds.). 1996. The Beetles of Northeastern North America. Volume II: Polyphaga: Series Bostrichiformia through Curculionoidea. The Sandhill Crane Press, Gainesville, Florida, x + 891–1721.

Enns, W. R. 1956. A revision of the genera Nemognatha, Zonitis, and Pseudozonitis (Coleoptera, Meloidae) in America north of Mexico, with a proposed new genus. The University of Kansas Science Bulletin 37, part 2(17):685–909 [Biodiversity Heritage Library].

Pinto, J. D. & M. A. Bologna. 2002. Chapter 111. Meloidae Gyllenhal 1810, pp. 522–529. In: R. H. Arnett, Jr., et al. (Eds.). American Beetles, Volume 2. CRC Press, Gainesville, xiv + 861 pp.

White, R. E. 1983. A Field Guide to the Beetles of North America. The Peterson Field Guide Series, Houghton Mifflin Co., Boston, xii + 368 pp.

Wilhelmi, A. P. & H. W. Krenn. 2012. Elongated mouthparts of nectar-feeding Meloidae (Coleoptera). Zoomorphology [abstract].

Copyright © Ted C. MacRae 2013

T.G.I.Flyday: Soybean nodule fly

I’ve been walking the rows of soybean fields for many years now, and while it might seem that I would have very quickly seen all there was to see in terms of insects associated with the crop, this is not the case. The major players are almost always present—lepidopteran caterpillars such as velvetbean caterpillar (Anticarsia gemmatalis) and soybean looper (Chrysodeixis includens), and stink bugs such as southern green stink bug (Nezara viridula), red-banded stink bug (Piezodorus guildinii) and brown stink bugs (Euschistus spp.). However, numerous other insects can be found at one time or another—some of great importance from the perspective of the farmer producer but others with very little impact on the crop. During a tour of soybean fields in Mississippi this past September, I saw a large number of “signal flies”¹ (family Platystomatidae) on the foliage of the soybean plants that I presumed to represent the soybean nodule fly, Rivellia quadrifasciata

¹ I originally learned these to be “picture-winged flies”—a name now more commonly used to refer to members of the family Ulidiidae—which I learned as “Otitidae”!

² This species can be separated with certainty from the closely related and largely sympatric species R. colei only by examination of male genitalia (Namba 1956). Rivellia quadrifasciata is more common and widespread than R. colei and is the species cited in literature in association with soybean.

Rivellia quadrifasciata (soybean nodule fly) | Stoneville, Mississipi

Rivellia quadrifasciata (soybean nodule fly) | Stoneville, Mississipi

Rivellia quadrifasciata is widely distributed in the eastern U.S. where it originally fed probably on tick trefoil, Desmodium spp. (Foote et al. 1987), but has since adapted to soybean, Glycines max (Eastman & Wuensche 1977), and black locust, Robinia pseudoacacia (McMichael et al. 1990). Despite its relatively recent adaptation to soybean as a favored host plant, the species does not appear to cause much economic damage to the crop. The small, white, maggot-like larvae live in the soil and feed on the Rhizobium nodules of the roots that are used by the plant for nitrogen-fixation. Soybean, of course, is famous for its compensatory abilities and can withstand considerable nodule injury without yield impact, and as a result losses from this insect are considered minor (Heatherly & Hodges 1998).

Signal flies wave their wings constantly.

The wings of signal flies are almost always in constant motion.

Of more interest from a natural history perspective, these flies—like other members of the Platystomatidae—are almost always seen with their wings in a constant “waving” motion as they walk about on the host leaves. This seems clearly an intraspecific “signaling” behavior (and the source of the family’s common name), with the pattern of markings on the wings and the particular sequence of movements of the wings combining to provide species-specific signals for mate recruitment. Some Asian members of the family are famous for the remarkably elongated eye stalks of the males, which aid in intraspecific male-to-male combat behaviors that provide selection pressure for even more elongate eye stalks. Sadly, our North American species exhibit no such modifications of the head, but their strangely tubular mouthparts do give them the appearance of wearing a “gas mask.”

gas mask

The strangely tubular mouthparts give adults the appearance of wearing a “gas mask.”

Information on the biology of adult platystomatids is limited, but a wide range of adult foods, e.g. nectar, honeydew, plant sap, bird droppings, and carrion, have been reported for this species, and R. quadrifasciata males have been observed to feed females globules of liquid during mating.

REFERENCES:

Eastman, C. E. & A. L. Wuensche. 1977. A new insect damaging nodule of soybeans: Rivellia quadrifasciata (Macquarl). Journal of the Georgia Entomological Society 12:190–199.

Foote, B. A., B. D. Bowker & B. A. McMichael. 1987. Host plants for North American species of Rivellia (Diptera, Platystomatidae). Entomological News 98:135–139 [Biodiversity Heritage].

Heatherly & Hodges. 1998. Soybean Production in the Midsouth. CRC Press LLC, Boca Raton, Florida, 416 pp. [Google Books].

McMichael,  B. A., B. A. Foote & B. D. Bowker, B. D. 1990. Biology of Rivellia melliginis (Diptera: Platystomatidae), a consumer of the nitrogen-fixing root nodules of black locust (Leguminosae). Annals of the Entomological Society of America 83(5):967–974 [abstract].

Namba, R. 1956. A revision of the flies of the genus Rivellia (Otitidae, Diptera) of America north of Mexico. Proceedings of the U.S. National Museum 106:21–84 [Biodiversity Heritage].

Copyright Ted C. MacRae 2013

One-shot Wednesday: Hawk moths suck!

Hyles lineata nectaring at flowers of Ericameria nauseosa | San Juan Co., Utah

Hyles lineata nectaring at flowers of Ericameria nauseosa | San Juan Co., Utah

I admit it—I give short shrift to Lepidoptera compared to other groups of insects. This is not because I don’t think they deserve attention; they are a stunning group with an amazing suite of adaptations to life on earth. It’s just that they already receive a lot of attention from others, while so many other equally amazing groups of insects remain almost completely unknown and under-appreciated due to the sole fact that they are smaller and less conspicuous. I’m not anti-Lepidoptera; I’m just pro-other Insecta. Every now and then, however, I must give Lepidoptera their due, and since today is Wednesday it’s a good day to feature a hawk moth that I got but a single photograph of on my late August Great Basin collecting trip.

Hyles lineata is not a particularly rare insect—in fact, it is one of the most common and widespread species of hawk moth (family Sphingidae) in North America. What is hard to come by, however, is a good shot of an adult nectaring at a flower. While such shots abound, most feature busy backgrounds and blurred wings. My photo is no different. However, I am a coleopterist, and when I took this shot there were also longhorned beetles present on the same flowers—it could be considered remarkable that I even diverted my attention long enough to attempt a shot. Of course, hawk moths are amazing creatures that have independently arrived at the same flight abilities and feeding habits as the equally amazing but taxonomically distant hummingbirds with their ability to hover motionless while sipping nectar and beating their wings at blinding frequencies. With little time to practice and even less to optimize settings, I’m amazed that I even got an adequate photograph before the moth zipped off to another bush. Yes, hawk moths suck, and that is amazing!

Copyright © Ted C. MacRae 2013

A winter longhorned beetle

According to the calendar it’s still autumn; however, in practical terms winter has settled in across much of the U.S. For those of us who study wood-boring beetles in the families Buprestidae (jewel beetles) and Cerambycidae (longhorned beetles), our time for collecting ended long ago. Adults of most species are active in spring and early summer, although some species don’t really make their appearance until summer is in full swing and a few rather distinctive species in genera such as Crossidius and Megacyllene make their appearance exclusively during fall. There is one longhorned beetle, however, that can actually be encountered in its greatest numbers during the dead of winter—Rhagium inquisitor, or the “ribbed pine borer.”

Rhagium inquisitor | Reynolds Co., Missouri

Rhagium inquisitor overwintering adult | Reynolds Co., Missouri

Rhagium inquisitor is unique among North American cerambycids in several respects. Most species in the family overwinter as mature or immature larvae, the former triggered to pupation by the first warm days of late winter and early spring in preparation for emergence as adults a few weeks later. Rhagium inquisitor, on the other hand, pupates during late summer and fall and then transforms to the adult before winter sets in (Linsley & Chemsak 1972), passing the winter in this stage and emerging during the earliest days of spring. Also unique among North American cerambycids is the place of pupation—directly under the bark. This contrasts with most other species, which either feed and pupate within the sapwood or feed under the bark but then bore into the sapwood for pupation. The species breeds exclusively in the trunks of dead conifers, with pines (Pinus spp.) especially favored, and as a result one can easily encounter the adults by peeling back the bark of dead pines during winter. Pupation takes place within distinctive rings of frass and coarse, fibrous wood shavings, prepared by the larva prior to pupation, so even when adults and larvae are not present the occurrence of this species can be determined by the occurrence of their pupation rings.

Adults overwinter in cells lined with frass and fibrous wood shavings.

Adults overwinter in cells lined with frass and fibrous wood shavings.

Not only are the overwintering and pupation habits of this species unique, but the adults themselves are distinctive from all other North American cerambycids (Yanega 1996) in their appearance—”big-shouldered” build, heavily “ribbed” elytra, and unusually short antennae (that are anything but “longhorned”). Lastly, the species is distributed not only in the boreal forests of North America, but Europe and Asia as well. The species is extremely variable in size and sculpturing, which combined with its Holarctic distribution has led to an unusually high number of synonyms. In fact, much of the North American literature prior to Linsley & Chemsak (1972) concluding that the North American and Eurasian forms represented the same species refers to this species as R. lineatum.

REFERENCES:

Linsely, E. G. & J. A. Chemsak. 1972. Cerambycidae of North America, Part VI, No. 1. Taxonomy and classification of the subfamily Lepturinae. University of California Publications in Entomology 69:viii + 1–138, 2 plates.

Yanega, D. 1996. Field Guide to Northeastern Longhorned Beetles (Coleoptera: Cerambycidae). Illinois Natural History Survey Manual 6: x + 1–174 [preview].

Copyright © Ted C. MacRae 2013

Q: How do you photograph cactus beetles?

A: Very carefully!

This past June I went out to one of my favorite spots in northwestern Oklahoma—Alabaster Caverns State Park in Woodward Co. The park, of course, is best known for its alabaster gypsum cavern—one of the largest such in the world—and the large population of bats that occupies it. Truth be told, in my several visits to the park during the past few years I have never been inside the cavern. The draw for me is—no surprise—it’s beetles. On my first visit in 2009 I found what is now known to be one of the largest extant populations of the rare Cylindera celeripes (swift tiger beetle), previously considered by some to be a potential candidate for listing on the federal endangered species list, and last year I found the northernmost locality of the interesting, fall-active jewel beetle Acmaeodera macra. This most recent visit was the earliest in the season yet, and as I walked the trails atop the mesa overlying the cavern I noticed numerous clumps of prickly pear cactus (Opuntia macrorhiza) dotting the landscape.

Opuntia phaecantha | Alabaster State Park, Woodward Co., Oklahoma

Opuntia macrorhiza | Alabaster Caverns State Park, Woodward Co., Oklahoma

Whenever I see prickly pear cactus anywhere west of Missouri I immediately think of cactus beetles—longhorned beetles in the genus Moneilema. A half-dozen species of these relatively large, bulky, clumsy, flightless, jet-black beetles live in the U.S., with another dozen or so extending the genus down into Mexico and Baja California, and all are associated exclusively with cactus, primarily species of the genus Opuntia. It wasn’t long before I found one, and deliberate searching among the cactus clumps produced a nice series of beetles representing what I later determined as M. armatum. The resemblance between Moneilema spp. and darkling beetles of the genus Eleodes is remarkable, not only in their appearance but also in their shared defensive habit of raising the abdomen when disturbed. The genus has been related taxonomically to the Old World genus Dorcadion, but Linsley & Chemsak (1984) regard the loss of wings and other morphological modifications to represent convergence resulting from the environmental constraints imposed by root-feeding, subterranean habits in arid environments and other situations where flightlessness is advantageous.

Moneilema armatum adult.

Moneilema armatum adult in situ on Opuntia macrorhiza pad.

I have encountered Moneilema beetles a number of times out west, including this species in Texas where it is most common, but since I have only been photographing insects for the past few years this was my first  chance to capture cactus beetle images as well as specimens. The above shot, taken with my iPhone, was straightforward enough, but I wanted some real photographs of the beetle—i.e., true close-up photos taken with a dedicated macro lens. I quickly learned that this would be highly problematic—those cactus spines are long and stiff and vicious, and these beetles are no dummies! Clearly their ability to adapt to such a terrifyingly well-defended plant has had a lot to do with the evolution of their slow, clumsy, flightless, you-don’t-scare-me demeanor. Normally when I photograph insects I do a little pruning or rearranging of nearby vegetation to get a clear, unobstructed view of the subject, and sometimes this also involves “pushing” my way into the vegetation to get the most desirable angle on the subject for the sake of composition. Not so here! In my first attempt, all I could think to do was locate a beetle sitting in repose and try to position myself in some way so that the beetle was within the viewfinder and the cactus’ spines were not impaled within my arms! The photo below shows the only shot out of several that I even considered halfway acceptable, but clearly the spines obstructing the view of the beetle were not going to be to my liking.

First attempt - looking down into plant where beetle was first sitting.

First attempt – looking down into plant where beetle was first sitting.

What to do? The beetle was behaving fairly well (i.e., it was not bolting for cover upon my approach), so I pulled out a pair of long forceps (that I carry with me for just such cases) and used them to gently prod the beetle into a more exposed position. The beetle crawled up onto one of the unopened cactus flower buds and perched momentarily, and I thought I had my winner photograph. I crouched down again, was able to get a little bit closer to the beetle than before, and fired a few shots. Looking at them in the preview window, however, left me still dissatisfied—the beetle was no longer obstructed, but the background was still jumbled, messy and dark, making it difficult for the dark-colored beetle to stand out. I would need to think of something else.

Second attempt - looking down on beetle after coaxing it up.

Second attempt – looking down on beetle after coaxing it up.

I actually take a lot of my photos with the insects sitting on plant parts that have been detached from the plant. This allows me to hold the plant in front of whatever background I choose and micro-adjust the position of the insect in the viewfinder for the best composition. This is “easier” (a relative term) with a shorter lens (think MP-E 65-mm) because the lens-to-subject distance matches almost perfectly the distance between my wrist and my fingers, allowing me to rest the camera lens on my wrist while holding the plant part with my fingers to “fix” the lens-to-subject distance. These beetles, however, are much too big for the MP-E 65-mm, so I had to use my longer 100-mm macro lens. The longer lens-to-subject distance does not allow resting the lens on my wrist, so I must come up with other ways of bracing myself and the subject to minimize movement. Detaching the pad on which the beetle was resting (and if you’ve never tried to detach an Opuntia cactus pad from its parent plant while trying not to disturb a beetle sitting on it, I can tell you it is not an easy thing), I also discovered that the pad was quite heavy and that holding it with the same forceps that I had used to prod the beetle (because of its vicious spines) was yet another unanticipated difficulty. I decided the best way to deal with it would be to get down on one knee in front of the plant, rest my arm on my other knee with the cactus pad extending out in front of me, and photograph the beetle with the plant as close in the background as possible to achieve a lighted and colored background that would help the beetle stand out. Following are examples of those attempts.

Third attempt - holding detaching pad with forceps for better view.

Third attempt – holding detaching pad with forceps for better view.

Detached allows even better close-ups.

Detached allows even better close-ups.

Better for sure, especially the latter, closer one. Still, I wasn’t satisfied—the backgrounds still just had too much clutter that detracted from the beetle and complicated the lighting. I decided to go for broke—why not go for the blue sky background, the cleanest, most natural and aesthetically pleasing background possible! This actually was my first thought when I saw the beetles, but I could never find one on a high enough plant that was growing in a situation where I was able to crouch low enough to get the angle with the sky in the background. By this time my arm was quite weak from holding the heavy cactus pad and squeezing the forceps firmly, and as I contemplated how I could possibly hold the pad up towards the sky and take the shots without being able to rest the camera on my arm I had an idea. Why not rest my arm on the camera? Specifically on top of the flash master unit atop the camera. I adjusted the camera settings for blue sky background, positioned the cactus pad in the forceps so that the pad (and beetle) were hanging down from the forceps but still in an upright position, pointed the camera to the brightest part of the sky (a few degrees from the sun), and then held the cactus pad out in front of the camera with my arm resting on the flash master unit. It worked! My arm still got tired quickly and needed frequent breaks, and I had to do a number of takes to get the exposure settings and composition I was looking for, but the photo below represents my closest approach to what I envisioned when I first knelt down to photograph these beetles. A clear view of the beetle, on its host plant, with lots of nice value contrast between beetle, plant and background.

Fourth attempt - holding detached pad up against sky for cleaner background.

Fourth attempt – holding detached pad up against sky for cleaner background.

Once I had the technique figured out, I was able to get some really close-ups shots as well, still, however, with enough blue sky in the background to make it clean and pretty…

Zooming in with sky background gives a nice, clean close-up.

Zooming in with sky background gives a nice, clean close-up.

…as well as playing with some unusual compositions that one can afford to try only after they are confident they have gotten the required shots. I am particularly fond of the following photo, in which the beetle appears to be “peeking” from behind its well-defended hiding place on its host plant.

Having a little fun with the close-ups - he's peaking!

Having a little fun with the close-ups – he’s peaking!

If you have any experiences photographing these or other such “well-defended” insects (without resorting to the white box!) I would love to hear about them.

REFERENCE:

Linsley, E. G. and J. A. Chemsak. 1984. The Cerambycidae of North America, Part VII, No. 1: Taxonomy and classification of the subfamily Lamiinae, tribes Parmenini through Acanthoderini. University of California Publications in Entomology 102:1–258 [preview].

Copyright © Ted C. MacRae 2013