Some years ago, I wrote about the skulls on my desk, asserting that any scientist worth their salt should have at least one. My skulls, however—six of them until recently, are not just “ordinary” modern human skulls (much as I would love to have one), but rather replicas of famous fossil hominid skulls and crania. It has been a while since I’ve added to my collection, but Santa was good to me this past Christmas, bringing me a replica of the “La Chapelle-aux-Saints 1” skull of Homo neanderthalensis, and for today’s birthday my wife gave me a replica of the “Toumaï” cranium of Sahelanthropus tchadensis.
Homo neanderthalensis “La Chapelle-aux-Saints 1”
The “La Chapelle-aux-Saints 1” skull was discovered in 1908 in La Chapelle-aux-Saints, France and is thought to be about 50,000–60,000 years old. It was the most complete Neanderthal skull at the time it was discovered and had a brain capacity exceeding 1600 cc—more than most modern humans. Unfortunately, initial reconstructions of Neanderthal anatomy based on la Chapelle-aux-Saints material depicted the species with thrust-forward skulls, stooped posture, bent hips and knees, and a divergent big toe—reinforcing existing synonymy of the term “Neanderthal” with brutality and savagery. The errors were eventually corrected, but only after decades had passed, and even today this unfair characterization lingers still among the general public.
This particular individual was a male, probably around 40 years of age at the time of his death, and in poor health. He had lost most of his teeth and was suffering from resorption of bone in the mandible and arthritis. This has been widely cited as an example of Neanderthal altruism, since with most of his teeth missing he would have been unable to process his own food. Later studies, however, have shown that the La Chapelle-aux-Saints 1 individual still had enough teeth in place to chew his own food, although perhaps with some difficulty (Tappen 1985).
Sahelanthropus tchadensis “Toumaï”
Sahelanthropus tchadensis was formally described in 2002 based on cranial remains of at least six individuals dated to about 6–7 million years ago during the Miocene epoch. “Toumaï” is the most complete of all the cranial remains, although it was crushed and badly deformed. To date, all the fossils found of Sahelanthropus have come from a small area of northern Chad.
The age of Sahelanthropus puts it around the time of the human-chimpanzee last common ancestor (HCLCA). At the time it was described, only cranial fragments were included in the original description, and the position of the opening for the spinal chord was used to infer that the species walked upright. However, a femur was also found alongside the cranium but was placed with animal bones and excluded from the original analysis. Later analysis of the femur concluded that Sahelanthropus was not bipedal (Macchiarelli et al. 2020), putting its status as a possible relative of the HCLCA into doubt. One alternative possibility that has been raised is that Sahelanthropus is not ancestral to either humans or chimpanzees, but rather to gorillas—a no less significant possibility since fossils attributed to the presumed gorilla lineage at this time consist only of teeth dating to about 10 million years ago.
Tappen, N. C. 1985. The dentition of the “Old Man” of La Chapelle-aux-Saints and inferences concerning Neanderthal behavior. American Journal of Physical Anthropology 67(1):43–50. doi:10.1002/ajpa.1330670106
Alternative title: Rich and Ted’s “Excellenter” Adventure.
This is the ninth “Collecting Trip iReport”; this one covering a 10-day trip to western Texas from April 27 to May 6, 2021 with friend and local collecting buddy Rich Thoma. Rich and I have done many shorter collecting trips (up to five days) throughout Missouri and in the neighboring states of Kansas, Nebraska, and Oklahoma (in fact, our first joint trip was to Barber County, Kansas way back in May 1986!). This trip, however, was our first truly long one together—10 days of collecting plus a travel day on each end. To take full advantage of the amount of time we had, we chose western Texas; an area that I have visited several times from the mid-90s through 2004 but not since. We wanted to make the trip during early to mid-May, but scheduling conflicts forced us to go earlier. I reasoned that even if it was a bit too early in the season, I could still collect infested wood for rearing—as I did with great success during my April 2004 trip. For Rich, who is more of a general insect collector, the trip provided him an opportunity for extended collecting in an area that he’d not previously spent a lot of time.
Day 1 – Monahans State Park, Shin Oak Picnic Area First stop of the trip. I was hoping to see beetles on flowers and maybe some tiger beetles, but unfortunately the area hasn’t had any rain yet this spring (according to the ranger). The mesquite was in bloom, but the only beetles I beat from it were a few tiny weevils. A few other plants were in bloom, but only one—Hymenopappus flavescens—had beetles on it (mordellids, which I picked up for Enrico Ruzzier). After a lot of walking I noticed Quercus havardii (shin oak) with flagged branches of dead leaves—a bit of investigation revealed it had been attacked by what must be Chrysobothris mescalero, so I collected as many flagged branches as I could find (7 total) and will bring them back for rearing.
Monahans Sandhills State Park.
Oenethera berlandieri (Berlandier’s sundrops).
Penstemon buckleyi (Buckley’s beardtongue).
Hymenopappus flavescens (collegeflower)—host flower for mordellids).
Chaetopappa ericoides (rose-heath).
Quercus havardii (shin oak) attacked by buprestid, presumably Chrysobothris mescalero.
Monahans State Park, Sandhills Picnic Area The big dunes are in this area. We didn’t expect to see any insects but brought our nets anyway. As we were walking the ridge we saw two grouse-like birds in the distance. We tracked them for a bit before I decided to go back and get my binoculars. They kept us at bay, but eventually I was able to get close enough to get a good look at them—they turned out to be scaled quail, a new bird for me. We continued tracking them and eventually they were joined by two more individuals. Handsome birds!
Rich scans the vast sand dunes.
Endless dunes!
Monahans State Park, Shin Oak Picnic Area After going into town and picking up some dinner, we came back out to the park and setup the ultraviolet lights. I didn’t have much optimism based on the lack of insect activity we saw during the day, but the temperatures were still plenty warm (well into the 80s) and we had nothing better to do. We returned to the Shin Oak Picnic Area since it had a mix of open and more vegetated dunes. Glad we did because two male Prionus arenarius, one Megacyllene antennata, and a tiny, unidentified elaphidiine came to the lights. I also found two small darkling beetles crawling on the sand nearby. I searched the surrounding sand hoping to find more males looking for females, or perhaps even a female herself, but found none. Wolf spiders, however, were common on the sand, their glowing eyes drawing attention beyond their abundance. I guess they are a species of Hogna, but I’m not certain—I photographed two individuals. Also got a large bostrichid (Apatides fortis?) at the light. Before we took down the lights, Rich called me over to see a tiny, slender, worm-like snake that we eventually determined was one of the blind snakes (Leptotyphlum sp.)—definitely a first for me.
Blacklights setup and humming.
Prionus arenarius male in front of the blacklight. This species is restricted to sand dune systems in west Texas and southeastern New Mexico.
Megacyllene antennata at ultraviolet light.
Hogna sp. (burrow-living wolf spider)—individual #1. This one appears to be a large female.
Hogna sp. (burrow-living wolf spider)—individual #2.
Hogna sp. (burrow-living wolf spider)—individual #2.
Day 2 – Toyahyale We stopped here on a tip from Jason Hansen and Tyler Hedlund, who swept good numbers of Agrilus cochisei off of Ambrosia psilostachya (western ragweed)—albeit, a few weeks later during May. I found the plants, but they were very small and low to the ground. Nevertheless, adults could be swept abundantly from the plants, and I was able to take good photos of singles and a mating pair with the big camera (iPhone photo here just to show what they loook like). Also got a single specimen of an apparently undescribed Acmaeodera sp. while sweeping for A. cochisei and one of two A. cochisei adults that I saw on flowers of Sphaeralcea sp.
Ambrosia psilostachya (western ragweed).
Agrilus cochesei mating pair on Ambrosia psilostachya (western ragweed).
Davis Mountains, 15.8 mi NE Ft. Davis We stopped here to look for the undescribed species of Acmaeodera, which Jason had found in good numbers during May on blooms of Lygodesmia and Convolvulus. Both plants were present, but neither was in bloom. Still, I found one adult on flowers of Verbina sp. and swept another from roadside vegetation. Ambrosia polystachia (western ragweed) was also present—I looked visually for Agrilus cochisei and did not see any, but I did get one adult and a couple of cryptocephalines in the sweeping that produced the second Acmaeodera.
Verbina sp. (host for Acmaeodera sp.).
Verbina sp. (host for Acmaeodera sp.).
Day 3 – Point of Rocks Roadside Park The weather turned decidedly cool in the Davis Mountains—first time I’ve ever frozen camping out on a collecting trip. The high temps are expected to stay in the 50s to 60s with a chance of rain for the next few days, so we decided to head down to the Big Bend area where there is still a chance of rain but warmer temps (up to the high 70s). Maybe we’ll come back to this area next week. Before leaving, however, I wanted to check the Quercus vasseyana (vassey oak) at Point of Rocks, where in the past I collected a good series of Mastogenius texanus even earlier in April (it was actually undescribed at the time). I’ve also collected Elytroleptus lycid-mimicking cerambycids on soapberry flowers here in June, although I knew the soapberry would not be in bloom. There was nothing on the oaks, but I did collect a few miscellaneous beetles beating Prosopis glandulosa (mesquite) and found one vassey oak branch with evidence of wood-boring beetle larval feeding and which I collected for rearing.
Point of Rocks Roadside Park.
17 mi S Alpine This is the first of two picnic areas along Hwy 118 going south from Alpine towards Big Bend National Park. There are lots of big Quercus vasseyana and Q. grisea here, so I stopped to see if I could find any infested wood. Bingo—one of the Q. grisea had a dead branch hanging from it that looked recently dead, and breaking apart a few of its smaller branches revealed fresh larval workings of some kind of buprestid (perhaps Polycesta arizonica). I cut of the branch and will bring back the bundle for rearing.
Dead Quercus grisea (gray oak) cut and bundled for rearing.
26 mi S Alpine This is the second of two picnic areas south of Alpine on Hwy 118 towards Big Bend National Park. Rich and I have both stopped here before, and Rich brought back infested wood (apparently Juglans sp.) from which I reared Chrysobothris comanche, so that was the plan again unless we saw active insects. We did not, so I scanned the trees and found a small Celtis laevigata (sugarberry) that had recently died—the bark was peeling, but there were no emergence holes that I could see. I started chopping into the trunk wood and quickly encountered a large buprestid larvae in its “pre-pupal fold”. This could be Texania fulleri based on host and location, so I cut a couple of bolts from the trunk to bring back for rearing. The branches also showed fresh larval workings, so I cut up one along with its smaller branchlets to also bring back for rearing.
Texania sp. prob. fulleri larva in trunk sapwood of dead Celtis laevigata (sugarberry).
3.3 mi W of Hwy 118 on Agua Fria Rd. Last stop of the day, which I was told could have water with tiger beetles. The creekbed was bone dry, and I collected but a single Chrysobothris sp. beating Prosopis glandulosa in flower—amazing given the proliferation of wildflowers that were in bloom. We did find a nautiloid/ammonite-type fossil in the bone-dry creekbed, which Rich says is of Cretaceous origin based on clam fossils in the underlying layer, and I tracked a common poorwill (Phalaenoptilus nuttallii) for a little bit, eventually getting close enough for the rare iPhone bird photo. Interesting position it assumed upon landing with its wings outstretched above its back.
Amazing wildflower displays in the area.
Seam in sedimentary layer of bedrock. I’m not sure if it is of volcanic provenance.
Common poorwill (Phalaenoptilus nuttallii) feigning injury.
Big Bend Ranch State Park, West Contrabondo Campground We arrived in Study Butte with just enough time to check into a motel and get dinner before heading out to Big Bend Ranch State Park. The drive through the park was incredible as we searched for a spot to setup the lights. After finding such spot, however, we were greeted as we got out of the car by a stiff, chilly wind. I knew there was no point in going through the trouble to setup, so instead we drove further down the 2-track to an amazing scenic overlook into an impressive box canyon. Words cannot describe the contortions this acrophobiac took to find good position for these photos, but it was well worth the views.
Dusk along Hwy 170 approaching Big Bend Ranch State Park.
Sunset over canyon near West Contrabondo Campground.
The closest I will ever get to the edge of a canyon!
Day 4 – Big Bend National Park, Boquillas Canyon Trail Well, the rain and cold continue to follow us. Rather than trying once again to drive somewhere else to escape, we decided to just sit this day out and visit the national park (not a bad Plan B!). Boquillas Canyon is an amazing slice through the rocks along the course of the Rio Grande River, and we hiked as far into the canyon as we could before sheet rock on the left and deep water on the right prevented any further progress. We saw only two insects—a tiger beetle larva that I “fished” out of one of the many larval burrows we saw (definitely Tetracha, and likely T. carolina) and a velvet ant (black head and pronotum, red abdomen).
Rio Grande River from Boquillas Canyon Trail.
Tetracha sp. prob. carolina (Carolina metallic tiger beetle) larva extracted from its borrow.
Mouth of Boquillas Canyon.
Mouth of Boquillas Canyon.
Cobblestone view of Boquillas Canyon.
Rio Grande River in Boquillas Canyon.
Rich contemplates emigration.
Still contemplating.
Big Bend National Park, near Panther Junction Driving towards the Chisos Mountains after hiking the Boquillas Canyon Trail, we encountered this fine adult male Aphonopelmis hentzii (Texas tarantula) crossing the road.
Male Aphonopelmis hentzii (Texas tarantula).
Big Bend National Park, Chisos Basin, Window Trail After lunching at Panther Junction, we headed up the into the Chisos Mountains towards Chisos Basin. Heavy clouds shrouded the peaks, so we weren’t sure what we would encounter up there, and once in the cloud zone and then heading down into the basin we could hardly see anything. Suddenly the western side of the basin came into view, still overcast and drizzly but at least free from the heavy fog that shrouded the eastern half of the basin. That made our decision of which trail to hike easy—the Lost Mines Trail under heavy fog versus the Window Trail with semi-clear views. I’ve hiked the Window Trail several times, but the last time was 17 years ago, and Rich in his single attempt a year or two later did not make it to the “Window” due to an impatient 10-year old son in tow. The views on the way down the canyon were spectacular—not despite the rain and clouds but because of it. It is a rare opportunity to see richly moist desert mountains shrouded in mist. At one point on the way down, a Woodhouse’s scrub jay (Aphelocoma woodhouseii) caught our attention—sitting very nearby in a tree before hopping down to the ground and nonchalantly pecking for bugs. Another soon joined him, first landing on a branch just a few feet above me and returning my captivated stare for a few moments before joining his mate on the trail ahead of us… followed shortly by a third individual. Their soft chirpings were a charming contrast to their more familiar raucous calls, and Rich and I soaked in the moment until they moved on. The trail is not an easy hike—nearly 7 miles round trip, dropping over a thousand feet on the way down, and then gaining over a thousand feet on the way back. The “Window,” however, is a sight to behold—a narrow gap in the rocks soaring high overhead with a view out onto the desert floor almost a thousand feet below. There is tempting danger at the window—its smooth, water-carved rocks are deceptively slippery even in dry conditions, and with the rain of the day they were especially so. I would not be surprised to learn that at least one person had made a fatal error in judging how close to the window one can get. They would have had plenty of time to think about that mistake on the way down! The views on the way back up were even more breathtaking, as fog enshrouded the high peaks towering above us. Periodically the sun attempted to push through the clouds, creating surreal lighting in a battle of sun versus rain, but eventually the rain won out and fell steadily on us for the last, switchback-laden mile back to the trailhead. As for insects, we actually did see some despite the rain—a few blister beetles resting torpidly on yellow composite flowers.
Window Trailhead.
Chisos Mountains’ South Rim from Window Trail.
Chisos Mountains east rim from Window Trail.
Beginning the descent to the “Window.”
Rich photographs a Woodhouse’s scrub-jay.
Yellow composites bloom en masse.
Resting point halfway down—Rich’s prior turnaround point.
The descent steepens!
Steps carved into the rock aid the traverse across slippery rocks.
The “Window” from as close as I was willing.
The author (left) and Rich document their arrival at the “Window.”
Looking back at the “Window” from a bit further back up the trail.
Beginning the rugged, 1,000-ft ascent back up to the basin.
Clouds and mist shroud the surrounding peaks.
A rainy last few miles provides a spectacular last look at from whence we came.
Day 5 – Big Bend National Park, Sotol Overlook We’re on our way to Santa Elena Canyon and stopped at this overlook. From a distance of 14 air miles, the canyon entrance looks like a tiny split in the rocks, belying the 1000-foot canyon walls that await us. Cacti were nicely in bloom, if a bit rain battered—two species of yellow-flowered Opuntia (pricklypear) and the always extraordinary pink flowers of Cylindropuntia imbricata (tree cholla). No insects were to be found, but we did find a live Orthoporus ornatus (desert millipede)—the first that we’ve seen on this trip—who obliged us by coiling into its classic defensive pose.
View towards Santa Elena Canyon—some 15 miles to the south—from Sotol Vista Overlook.
Orthoporus ornatus (desert millipede).
Cylindropuntia imbricata (tree cholla).
Big Bend National Park, Santa Elena Canyon From 14 air miles away, Santa Elena Canyon looks like a tiny split in a little cliff (see previous post). Up close, however, it’s soaring walls tower 1000 feet overhead! The hike into the canyon features a tortuous staircase to bypass a narrows, followed by a leisurely stroll along the canyon bottoms along the Rio Grande River. Rain last night has triggered an en masse millipede emergence, and even a few insects were seen: velvet ant; Acmaeodera mixta, Trichodes sp. and Gnathium sp. on yellow composite flowers; and Omorgus sp. crawling in the sand.
Undetermined yellow composite in Rio Grande River floodplain.
Euodynerus pratensis on flower of undetermined yellow composite.
Mouth of Santa Elena Canyon.
The Rio Grande River spills forth from Santa Elena Canyon.
Agave lechuguilla (lechuguilla).
View of Mexican side of Santa Elena Canyon from the U.S. side.
The Santa Elena Canyon Trail probes deeper into the canyon.
Narrowing canyon walls.
No more land!
Big Bend National Park, Cerro Castellan (Castolon Peak) The layers visible in Cerro Castellan reveal millions of years of volcanic events. Stacked in this tower are several lava flows and volcanic tuffs (ash deposits), with layers of gravel and clay from periods of erosion between eruptions. Cerro Castellan’s cap rock is the same lava that formed the Chisos’ South Rim. The lighter orange and gray layers beneath are tuffs.
Cerro Castellan (Castolon Peak).
A smaller peak northwest of Cerro Castellan rises above volcanic tuffs (ash deposits) in the foreground.
Cerro Castellan (Castolon Peak).
Big Bend National Park, Tuff CanyonTrail Some of the oldest layers of volcanic rocks lie at the bottom of Tuff Canyon. It is dry most of the time, but summer thunderstorm runoff churns through the canyon, cutting it deeper. This canyon is narrower and deeper than most others in Big Bend, partly because the light gray volcanic tuff is relatively cohesive. Swift, powerful floodwaters will cut down through any kind of bedrock, but the tuff is better able to resist the widening effects of sideward erosion.
4.6 mi W of Langtry After leaving Big Bend National Park we started making our way towards the Del Rio area in Val Verde Co., where we plan to meet up tomorrow with a few other beetle collectors (Dan Heffern, Brian Raber, and Ed Riley). I noted that our path took us right by the type locality of the recently described tiger beetle, Amblycheila katzi. I didn’t have much hope of actually seeing the species, given that the season seems to have even really started yet and the earliest record of the species is the 23rd of May. Nevertheless, since we happened by the spot right as dusk was falling it seems a good idea to at least try. First we walked the limestone 2-track just to see what was out and about (just a few darkling beetles), then we started checking the limestone ledges where the tiger beetle can be found. We checked about 100 m of ledge without seeing any, and I was about ready to call it a night when we finally spotted one. It was running in a seam about 2 m above the ground and was unmistakable. My attempt tiger an in situ photo failed at first, and it almost escaped deep into a crevice before I pulled out my long forceps and pulled him out by a tarsus. It gave me a healthy pinch when I grabbed it while fumbling in my pack for a bottle, but eventually I prevailed. Later on I placed it back on the ledge and covered it with the Nalgene bottle cap, waited for it to calm down, then carefully lifted the cap and got a couple of shots before it began scurrying again. We checked another 50 m of ledge without seeing any and decided to call it a night.
Rich scanning the ground at dusk for nocturnal insects.
Selenops actophilus, one of the so-called “flatties.”
Day 6 – Comstock (prologue) The owner of the motel in which we stayed was super friendly and kind enough to leave a key in the door for our very late arrival last night. Settling up this morning, I saw this on the wall (right next to his vaccination card—two doses) and just had to get a pic. He was only too happy to oblige when I told him how awesome it was and could I get a picture. Hey, no reason to reveal true political leanings if it means we can all just get along.
Trump Lost LOL!
Illegal tender.
Amistad National Recreation Area, Spur 406 Campground A quick stop here on the way to meet up with Dan, Brian, and Ed near Devil’s River. There were lots of dead and dying Acacia constricta (whitethorn acacias), off of which I beat a diversity of cerambycids and buprestids from both the dead and dying branches. I found one small sapling of the same with evidence of fresh woodboring beetle larval feeding, so I collected it as well for rearing. Other than that I just collected a few weevils off of living Prosopis glandulosa (mesquite) for weevil-specialist Bob Anderson.
Apiomerus spissipes, one of the bee assassins, in flower of Opuntia engelmannii (Engelmann’s pricklypear)
Devils River near Dry Devils River We met up with Dan, Brian, and Ed north of Del Rio and, after exchanging peasantries, followed them into a private resort surrounding a stretch of the Devils River*—considered by some to be the most unspoiled river in Texas. Dan had arranged for access after befriending Dave Barker, a commercial herpetologist who had built a home on property overlooking the Devils River and also a guest cabin on property overlooking nearby Gold Mine Canyon. We met up at the cabin and then carpooled to a spot along the Devils River where Dan and Brian had placed a variety of traps that needed servicing. While they took care of that, Rich, Ed, and I collected in the area around where the traps had been placed. I started off beating dead branches of Vachellia farnesiana (huisache), sweeping blooming Salvia sp. (sage), and beating dead branches of Acacia rigidula (blackbrush acacia) down by the river but collected only a smattering of beetles. I then clambered up the rocks and found good numbers of Acmaeodera spp. visiting flowers of Echinocereus enneacanthus (strawberry cactus) and Opuntia engelmannii (Engelmann’s pricklypear). After collecting my fill of those beetles, I returned to the riverbanks and noticed some large Carya illinoensis (pecan), from which I beat a few Anthaxia (Haplanthaxia) sp. (hoping they are one of the recently described taxa). By then, Dan and Brian had finished servicing their traps and gave me a few specimens that had been collected in their ethanol-baited Lingren funnel trap.
* The accepted usage of the name is without an apostrophe, although the reason for this is a matter of debate.
Dan (right) and Brian service a malaise trap.
Echinocereus enneacanthus (strawberry cactus).
After finishing along the Devils River, Dave invited us to his home for a few post-collecting beers. Spectacular views overlooking the river.
The author (left) with (L-R): Dan Heffern, Brian Raber, Dave Barker, Rich Thoma, and Ed Riley.
GoldMine Canyon We setup a variety of light stations at Dave’s cabin a little east of the river. It was warm and dry, so conditions were good, if a bit windy. My two ultraviolet light stations a bit north of the cabin ended up catching the lion’s share of cerambycids, although it was mostly elaphidiines and a Lepturges sp. We also picked up a few tenebrionids and a Carabidae crawling on the ground near the lights. Ed’s mercury vapor/ ultraviolet station on the road west of the cabin attracted a few more cerambycids, including a Lagocheirus sp. Dan, however, got the catch of the night—a Goes that came to Dan’s $6 battery-powered lantern on the road south of Ed’s station. We at first thought it might be G. novus, but that Dan later decided it was just a very lightly marked G. tesselatus. Zephyranthes chlorosolen (Brazos rain lily) blossoms were beautiful at night, their stark whiteness catching the beam of the headlamp.
Zephyranthes chlorosolen (Brazos rain lily).
Day 7 – Gold Mine Canyon Rich and I spent the morning walking the grounds around Dave’s cabin while the others packed up and got ready to leave. I found some oak (Quercus vasseyana) saplings infested with cerambycid larvae, which I cut and bundled to bring back for rearing. Acmaeodera were already coming to the flowers—a couple of small ones on an undetermined white composite, three different species on Opuntia engelmannii (Engelmann’s pricklypear) and Echinocereus enneacanthus (strawberry cactus) flowers, and a couple on Coreopsis? flowers. I beat some of the Diospyros texana (Texas persimmon) looking for Spectralia robusta but did not find any. It got hotter than blazes real quick!
Opuntia engelmannii (Engelmann’s pricklypear).
After Dan, Brian, and Ed left, Rich and I went down to the canyon entrance to beat on the oaks and Texas persimmons that dot the sides of the canyon. Nothing was on either plant, however, and I ended up again concentrating on the diversity of Acmaeodera that were coming to flowers of Coreopsis sp., Opuntia engelmannii, and an unidentified yellow composite. I did beat a single Cleridae off a dead branch of mesquite.
Gold Mine Canyon.
Devils Rivernear Dry Devils River After finishing at Gold Mine Canyon, we came back to the Devils River crossing near the first stop we made here for our final stop of the day. Temperatures had maxed out at 99°F! and I wasn’t too motivated to collect much more today, but when we arrived at the spot I noticed some declining Platanus occidentalis (American sycamore) with large emergence holes suggestive of Mallodon dasystomus and old fallen branches with the same suggestive of Polycesta elata. The tree with the Mallodon holes was much too large to cut (and embedded within a thicket of poison ivy), so I occupied myself by collecting a few more Acmaeodera off of Opuntia engelmannii flowers. As I walked the roadway I noticed more sycamore with some smaller trees in the grove that looked recently dead. One was dead from about three feet up and had buprestid workings under loose, peeling bark. I cut just above the live portion (3–4” diameter) and took three 4-ft sections of the trunk above that point, each cut showing internal galleries. If P. elata emerges from these pieces of wood I will be “elated” [Later edit: I did rear the species!].
Devils River crossing.
The water was too deep for my Ford Escape.
Next time I’ll have a higher-clearance vehicle.
Gold Mine Canyon For blacklighting tonight we decided to bring the lights down to the mouth of the canyon where we collected this afternoon so we could have acces to anything associated with the oaks. Unfortunately it was a much slower night than last night and cooled off quickly despite the high heat earlier in the day. I only got three cerambycids (one Ecyrus and two Aneflomorpha) and a few clerids at the lights. I also walked the jeep track leading to the mouth of the canyon and the main road outside and didn’t see anything until I almost got back, when I noticed a beetle sitting on the trail that looked a bit odd. When I picked it up I realized it was a buprestid in the genus Melanophila—what the heck?! Totally unexpected to see this beetle at night and especially on the ground instead of on a tree. I suppose it is one of the juniper-feeding species (since pine doesn’t occur here).
Sinking sun over Gold Mine Canyon.
Juniper cadaver in late-evening light.
Day 8 – Gold Mine Canyon Our plan today was to head over to some spots further west in Val Verde Co., but before leaving the cabin we did a bit of walking around and took a last few photographs.
Gold Mine Canyon in the morning.
Epithelantha micromeris (button cactus).
22 mi N Del Rio I had noted a few scattered plants of Senna roemeriana (two-leaved senna) at this spot a couple of days ago when meeting up with Dan but didn’t have the chance to sample them for Agrilus obtusus—one of my target species for the trip. I found one on the second plant I checked, so I went back to the truck to get my big camera hoping to photograph one in situ. I didn’t see anything on the next plant, but when I tapped it over my net there was another one! I did that for the next hour or so—inspecting and tapping—and never saw another one. Rich did get one sweeping the S. roemeriana (in an area I’d already worked) and was gracious enough to give it to me. There were also tiny bruchids and clerids on the plant. Other than that I got a couple of Acmaeodera mixta sweeping, a couple of Canthon sp. in flight, and a Euphoria kerni on the flower of Zephyranthes chlorosolen.
Senna roemeriana (two-leaved senna).
Hwy 90 at Del Rio River I first visited this spot nearby 30 years ago based on a tip by Dan Heffern, who had reared a Polycesta elata from Fraxinus greggii (Gregg ash). I found the ash on that visit, though I didn’t find any wood infested with that species here, but what I did find was Diospyros texana (Texas persimmon) infested with Spectralia robusta and managed to rear out a few individuals. That was my quarry today, but when I arrived the abandoned road on the northwest side of the bridge was fenced and posted. I took a look on the southwest side and found open access up top and decided to hike down towards the ravine from that point. Things seems to be about as far along here as they were at Devils River, with not much activity except for Acmaeodera coming to the Opuntia engelmannii flowers, albeit not quite the diversity. I found a few more also on flowers of an undetermined yellow composite, Coreposis sp., and an undetermined white composite. Closer towards the ravine I found just a single large F. microphylla (with no signs of infestation) and several D. texana—two of which had the half-live/half-dead branches in which S. robusta larvae live and showing the emergence holes of adults. I collected both branches and will bring them back for rearing.
Hwy 90 bridge over Pecos River.
Adult emergence hole of Spectralia robusta in live/dead trunk of Diospyros texana (Texas persimmon).
Amistad National Recreation Area, Pecos River Access Nature Trail Just a quick stop at the Pecos River Access on the east side to walk the short nature trail and gaze at the 300-ft high, 100 million-year-old (Cretaceous Period) limestone bluffs that the Pecos River has cut near the junction with the Rio Grande River (the latter can be seen on the left side of photo 2). The first photo also shows the old road that was originally used to cross the river snaking down the west bluff—traffic today uses the tall bridge in the right side of the photo.
Limestone bluffs over the Pecos River
Pecos River junction with the Rio Grande River.
Pecos River Access Nature Trail.
Seminole Canyon State Park, Canyon Rim Trail We came here looking for oak potentially infested with Spectralia roburella. We didn’t find any oak on this trail, but I did find a Acacia rigidula (blackbrush acacia) showing signs of infestation by buprestid larvae (difficult to find such this year because the freeze in February apparently killed or severely knocked back most of this species). I cut up and bundled the wood to bring back for rearing.
To insects, the collectors’ shadows loom large.
Amistad National Recreation Area, Spur 406 Campground We got to Seminole Canyon State Park too late to check with the supervisor about setting up our blacklights at the park, so we came back to Spur 406 Campground where we’d collected a few things two days earlier. Temps were okay and there was no moon or wind, but it was still a very slow night—for me just a couple of elaphidiines, two trogids, two Digitinthophagus gazella (why do I continue to pick these things up?), and a bostrichid.
Ready for another night of blacklighting.
Day 9 – Seminole Canyon State Park, Windmill Trail We came back to the state park since we ran out of time to look for oak yesterday. The park staff were extraordinarily helpful—both in getting me checked in with my permit and in directing me to the spots where I might be able to find oak. Their first tip—along the Window Trail—paid off, where we found a nice cluster of Quercus fusiformis (plateau live oak) clinging to the upper canyon walls. Most of them had dead branches on them, and I did some beating to see if by some chance the beetles would be out already. They were not, but on the second tree that I examined I found a main branch from near the base with the outer 4–6 ft dead but the bark not peeling and small living sprouts about 2 ft from the base. Pulling apart the dead portion revealed buprestid larval workings, likely my quarry—Spectralia roburella, but these could be old. I cut the branch at the base, however, and found fresh larval galleries in the sapwood of the still-living portion even extending into the trunk—success! I’ll bring this back for rearing and will hopefully get S. roburella out of it. Further along the trail I found a single Senna roemeriana (two-leaved senna), inspected it carefully and didn’t see anything, then tapped the plant over my beating sheet and a single Agrilus obtusus fell onto it to add to the three that I got yesterday. I really wish I could see these things before I beat them off the plants so I could take an in situ photo!
The Maker of Peace, a bronze sculpture by Texas artist Bill Worrell.
View of Seminole Canyon to the east.
View of Seminole Canyon to the west. The Fate Bell rock shelter is on the right at the bend.
A vulture soars overhead.
Panoramic view of Seminole Canyon.
The author admires a fine stand of Quercus fusiformis (plateau live oak). No oaks were harmed in the making of this photo!😊
My souvenir for the trip!
Seminole Canyon State Park, Canyon Rim Trail Another place the park staff recommended to find oaks was along the Canyon Rim Trail. We hiked that trail yesterday for a bit and didn’t see any oaks, but it turns out they were farther down the trail then we went. We headed back out on the trail to find them, along the way checking Opuntia engelmannii flowers for Acmaeodera and seeing only one for the time being. Just past the first of two east-facing ravines where we expected to find oaks, we found one on the canyon edge that looked rather bedraggled. There were some completely dead branches with bark already sloughed but also one large fresher-looking dead branch that had one live branchlet coming out of it about a third of the way up (meaning there was at least a strip of live wood within the branch). I broke of one of the dead branches near the live/dead junction, and there in its gallery was a smallish buprestid larva that almost certainly is Spectralia roburella! I took the entire branch and cut it up to bring back for rearing. We continued hiking along the canyon rim and saw the most amazing views—sheer Cretaceous limestone walls towering 300 feet above the narrow canyon bottoms! Farther down the trail we finally started seeing Acmaeodera on O. engelmannii flowers. By then we’d hiked more than a mile and a half down the trail and temps were beginning to soar, so we turned back, picked up the wood we’d cut as we came back by, and finished the long, hot slog back to the truck.
A mirid bug (Oncerometopus sp.) on flower of Viguiera dentata.
View of cave dwelling area.
Top of a Canyon!
Seminole Canyon stretches from one side to the other.
Seminole Canyon walls.
Comstock As Rich and I were lunching after our last stop, I got a text from Ed Riley about a spot near Comstock where he’d collected what he believed to be Acmaeodera starrae—a species I’ve never encountered. It just so happened that we would be passing by Comstock on our way back east this afternoon, so we stopped to see if we could find it. Bingo—right where and in the flowers he said it would be (an undetermined white composite that I later determined to be Aphanostephus ramosissimus [lazy daisy]). Together we found about 15 specimens, and interestingly about 25% have red rather than yellow elytra markings. [EDIT: I’m not convinced these are A. starrae, but I do not yet know what they are.]
Aphanostephus ramosissimus (lazy daisy).
Aphanostephus ramosissimus (lazy daisy).
Day 10 – Garner State Park, Wild Horse Creek/Highway/Campos Trails It’s the final day of collecting for the trip, and for our last stop we picked Garner State Park along the Frío River. I was last here back in the mid 90s—nearly 30 years ago, Acmaeodera ornatoides and Polycesta elata being the two species of note that I remember finding. I remember during that first visit that the area reminded me of my beloved Ozark Mountains, especially the White River Hills region in southwestern Missouri—scraggly forests of oak and juniper on steep, rocky slopes over craggy hill and lazy dale. It still does, although the species are a bit different—Juniperus ashei (Ashe juniper) dominates instead of J. virginiana (eastern red-cedar), and a variety of other oaks replace the familiar Ozarkian Quercus stellata and Q. marilandica (post and blackjack oaks, respectively). We hiked a series of trails on the western side of the park, thinking the west-facing slopes would tend to be drier and result in more open, glade-like habitats, and for the most part this was true. Almost immediately after reaching the first glade along Wild Horse Creek Trail, we found A. ornatoides and at least two smaller congeners on flowers of Coreopsis sp. Flowers of Viguiera dentata have been uncharacteristically depauperate of buprestids on this trip, but I picked up a couple of Acmaeodera neglecta/neoneglecta nearby as well. On the Highway Trail a good series of Acmaeodera was found on flowers of an undetermined small white composite, and a few were also found on flowers of Senna roemeriana (two-leaved senna)—though no Agrilus obtusus. The Campos Trail ascended steeply and ruggedly to a nice overlook, where I found one Acmaeodera sp. on the flower of Zephyranthes chlorosolen and then the mother-load—the biggest diversity and abundance of Acmaeodera I’ve ever seen on cactus flowers occurred nearby in a single flowering Opuntia engelmannii. The final specimen of the day’s “Acmaeodera-a-thon” was taken a bit further up the trail on the flower of Echinocereus enneacanthus (strawberry cactus). Fortunately, the trail was all downhill from there (albeit a bit too steep and rocky at times for these no-longer-nimble legs!). We finished off the hike back along the Wild Horse Creek Trail by collecting a branch off a fallen oak that I hope proves fruitful in the rearing box back home and had some lunch. As we were getting ready to leave, I noticed most of the trees in the camping area were Carya illinoensis (pecans)—a great host for buprestids (especially Xenorhipis brendeli), so I picked up several fallen branches from under the trees to complete the wood collecting portion of the trip.
Acmaeodera ornatoides on flower of Coreopsis sp.
Overlook from atop the Campos Trail.
Xeric limestone prairie (glade) habitat.
Echinocereus enneacanthus (strawberry cactus).
Echinocereus enneacanthus (strawberry cactus).
Garner State Park, Brazos River (epilogue) We visited the nearby Frio River for one last look at the park, took a shower, and settled in for the 15-hour trek back to St. Louis.
During the past year or so I’ve followed up my longer (one week or more) insect collecting trips with a synoptic “iReport”—so named because they are illustrated exclusively with iPhone photographs. It may come as a surprise to some, but iPhones actually take pretty good pictures (especially if you pay attention to their strengths and weaknesses), and their small, compact size makes it easy to take lots of photos while trying to use time in the field wisely. I find the iPhone to be a great tool for documenting the general flavor of a trip and for taking quick photos of subjects before getting out the big rig. I will, of course, feature photographs taken with the ‘real’ camera in future posts.
For this trip, I teamed up with Jeff Huether for the third time since 2012. Our quarry for this trip was longhorned beetles (family Cerambycidae) in the genus Prionus. Larvae of these beetles are subterranean, with some species feeding on roots of woody plants and others on roots of grasses and other herbaceous plants. Among the latter are an array of species occurring in the Great Plains, many of which have been very uncommonly collected. However, in recent years lures have been produced that are impregnated with prionic acid—the principal component of sex pheromones emitted by females in the genus. Originally produced for use in commercial orchards (which are sometimes attacked by P. laticollis in the east and P. californicus in the west), these lures are proving themselves to be useful for us taxonomist-types who wish to augment the limited amount of available material of other, non-economic species in the genus. While Prionus was our main goal, rest assured that I did not pass on the opportunity to find and photograph other beetles of interest.
I began the trip by driving from St. Louis to Wichita, Kansas to meet up with Jeff, who had flown there from his home in upstate New York. Our plan was to visit sites in southeastern Colorado and northeastern New Mexico, where several of the Prionus spp. that we were looking for were known to occur. Before doing this, however, we stopped in Hardtner, Kansas to see “Beetle Bill” Smith and tour his amazing natural history tribute, Bill and Janet’s Nature Museum.
“Beetle Bill” Smith, founder of Bill & Janet’s Nature Museum, Hardtner, Kansas.
After the tour (and a delicious lunch at his house of fried crappie prepared by his wife Janet), we headed west of town and then south just across the state line into Oklahoma to a spot where Bill had found a blister beetle (family Meloidae) that Jeff was interested in finding. During lunch I mentioned a jewel beetle (family Buprestidae) that I had looked for in the area several times, but which had so far eluded me—Buprestis confluenta. Emerald green with a dense splattering of bright yellow flecks on the elytra, it is one of North America’s most striking jewel beetles and is known to breed in the trunks of dead cottonwoods (Populus deltoides). Bill mentioned that he had collected this species at the very spot where we were going, and when we arrived I was enticed by the sight of a cottonwood grove containing several large, dead standing trunks—perfect for B. confluenta.
Buprestis spp. love large, dead, barkless cottonwood trunks.
I searched for more than one hour without seeing the species, though I did find a few individuals of the related (and equally striking) B. rufipes on the trunks of the large, dead trees. Once that amount of time passes I’m no longer really expecting to see what I’m looking for, but suddenly there it was in all of its unmistakable glory! It would be the only individual seen despite another hour of searching, but it still felt good for the first beetle of the trip to be one I’d been looking for more than 30 years!
Buprestisconfluenta, on the trunk of a large, dead cottonwood (Populus deltoides) | Woods Col., Oklahoma| USA: Oklahoma
I usually wait until near the end of a collecting trip to take the requisite selfie, but on this trip I was sporting new headgear and anxious to document its maiden voyage. My previous headgear of choice, a vintage Mambosok (impossible to get now), finally disintegrated after 20 years of field use, and on the way out-of-town I picked up a genuine Buff® do-rag. I know many collectors prefer a brim, but I don’t like they way brims limit my field of vision or get in the way when I’m using a camera. Besides, I’m usually looking down on the ground or on vegetation, so sun on my face is not a big issue. And do I be stylin’ or wut?
A “selfie” makes the trip official.
We made it to our first locality in southeast Colorado by noon the next day—the vast, dry grasslands north of Las Animas. Jeff had collected a blister beetle of interest here on an earlier trip, but as I looked out across the desolate landscape I wondered what on Earth I could find here that would be even remotely interesting to me.
Shortgrass prairie habitat for Prionus integer.
Letting Jeff have some time to look for his blister beetle, I started down the roadside and after a short time found a live female Prionus sp. (later determined to represent P. integer). The only female Prionus I had ever collected before was P. heroicus, a giant species out in Arizona, and that was almost 30 years ago, so I wasn’t immediately sure what it was. Eventually I decided it must be Prionus, and a quick stop to kick the dirt while Jeff looked for his beetle turned into an intense search for more Prionus that surely were there. I did find two male carcasses shortly thereafter, and then nothing more was seen for the next hour or so.
Prionus integer male (found dead) | Bent Co., Colorado
During the time that I was searching, however, I started noticing strange burrows in the ground. I excavated a few—they were shallow but contained nothing. Nevertheless, they matched the size of the beetles perfectly—surely there was a connection?
Prionus integer adult burrow.
I wondered if Jeff knew about the beetles occurring here, but when I showed him what I had found the surprised look on his face told me this was not the case. I showed him the burrows, and we both agreed they had to be connected. I got the shovel out of the truck and walked back to the area where I had seen the live female, then sunk the shovel deep into the ground next to one of the burrows and pried up a chuck of the soil containing the burrow in its entirety. As we broke apart the soil another female was revealed, and we immediately decided to set out some traps baited with prionic acid lures. We expected the beetles to become active during dusk, so we went into town to get something to eat and then check out another nearby locality before returning to the site at dusk. While we were gone it rained heavily at the site, so we weren’t sure if or how this would affect beetle activity and their possible attraction to the traps. However, as we approached the site (slipping and sliding on the muddy 2-track), we could actually see beetles crawling on the road from afar. What we found when we got out of the car was nothing short of mind-blowing—the beetles were everywhere, crawling on the road, crawling through the grass, and overflowing in the flooded traps! The vast majority were males, as expected, but we also found a fair number of the much more rarely collected females. This was significant, as the chance to observe mating and oviposition behavior made the encounter far more informative than if we had only found and collected the much more numerous males.
Prionus integer mating pair.
The following day we headed south into northeastern New Mexico to look at some shortgrass prairie sites near Gladstone (Union Co.) where two species of Prionus had been collected in recent years: P. fissicornis (the lone member of the subgenus Antennalia) and P. emarginatus (one of eight species in the poorly known subgenus Homaesthesis, found primarily in the Great Plains and Rocky Mountains). Fresh off of our experience the previous day, we were on the lookout for any suspicious looking “burrows” as we checked the roadsides at several spots in the area but found nothing, and while a few blister beetles piqued the interest of Jeff at one site, the complete absence of woody vegetation or flowering plants in general in the stark grassland landscape made the chances of me finding any other woodboring beetles remote. Eventually I became distracted by the lizards that darted through the vegetation around us, including this lesser earless lizard (Holbrookia maculata) and a collared lizard (better photos of both forthcoming).
Holbrookia maculata (lesser earless lizard) | Union Co., New Mexico.
Despite no clues to suggest that Prionus beetles were active in the area, we set out some traps at two sites with soil exposures that seemed similar to those seen the day before. As Jeff set the last pair of traps in place, my distraction with saurian subjects continued with a dusty hognose snake (Heterodon nasicus gloydi). While photographing the animal I looked down to my side, and what did I see but a male Prionus fissicornis crawling through the vegetation! I called out to Jeff, and for the next half an hour or so we scoured the surrounding area in a failed attempt to find more. We would not be back until the next morning to check the traps, so our curiosity about how abundant the beetles might be would have to wait another 18 hours. We cast an eye towards the north and watched late afternoon thunderstorms roll across the expansive landscape and decided to check out the habitat in nearby Mills Rim.
Thunderstorms over shortgrass prairie.
The rocky terrain with oak/pine/juniper woodlands at Mills Rim was a dramatic contrast to the gently rolling grasslands of the surrounding areas. We came here mostly out of curiosity, without any specific goal, but almost immediately after getting out of the car a huge Prionus male flew up to us—almost surely attracted by the scent of the lures we were carrying. Within a few minutes another male flew in, and then another. Because of their huge size and occurrence within oak woodland habitat, we concluded they must represent P. heroicus, more commonly encountered in the “Sky Islands” of southeastern Arizona. We stuck around to collect a few more, but as dusk approached we returned to the surrounding grasslands to set out some lures to see if we could attract other Prionus species. The frontal system that had waved across the landscape during the afternoon had left in its wake textured layers of clouds, producing spectacular colors as the sun sank inexorably below the horizon.
Sunset over shortgrass prairie.
This attempt to collect grassland Prionus beetles would not be successful, and as dusk progressed we became distracted collecting cactus beetles (Moneilema sp., family Cerambycidae) from prickly pear cactus plants (Opuntia sp.) before darkness ended our day’s efforts. This did not mean, however, that all of our efforts were done—there are still night active insects, and in the Great Plains what better nocturnal insect to look for than North America’s largest tiger beetle, the Great Plains giant tiger beetle (Amblycheila cylindriformis, family Cicindelidae—or subfamily Cicindelinae—or supertribe Cicindelitae, depending on who you talk to)?! We kept our eyes on the headlamp illuminated 2-track as we drove back to the highway and then turned down another road that led into promising looking habitat. Within a half-mile of the highway we saw one, so I got out to pick it up and then started walking. I walked another half-mile or so on the road but didn’t see anything except a few Eleodes darkling beetles (family Tenebrionidae), then turned around and walked the habitat alongside the road on the way back. As I walked, tiny little rodents—looking like a cross between a mouse and a vole—flashed in and out of my headlight beam as they hopped and scurried through the vegetation in front of me. Most fled frantically in response to my attempted approach, but one, for some reason, froze long enough under my lamp to allow me this one photo. When I posted the photo on my Facebook page, opinions on its identity ranged from kangaroo rat (Dipodomys sp.) silky pocket mouse (Perognathus flavus) to jumping mouse (Zapus sp.). Beats me.
Kangaroo rat? Silky pocket mouse? Jumping mouse? | Union Co., New Mexico.
Almost as if by command, it rained during the early evening hours where we had set the traps, and the following morning we were rewarded with traps brimming with Prionus fissicornis males. Not only were the traps full, but males were still running around in the vicinity, and we even found a few females, one of which was in the act of ovipositing into the soil at the base of a plant.
Prionus fissicornis male | Harding Co., New Mexico.
Prionus fissicornis oviposition hole.
Eventually P. fissicornis activity subsided, and we decided to go back to the area around Mills Rim to see what beetles we might find in the woodland habitats. We also still were not sure about the Prionus beetles we had collected there the previous day and whether they truly represented P. heroicus. The scrubby oaks and conifers screamed “Beat me!”, and doing so proved extraordinarily productive, with at least a half-dozen species of jewel beetles collected—including a nice series of a rather large Chrysobothris sp. from the oaks that I do not recognize and a single specimen of the uncommonly collected Phaenops piniedulis off of the pines.
Oak/juniper woodland at Mills Canyon, habitat for Prionus heroicus.
Not only is the scenery at Mills Rim Campground beyond spectacular, it also boasts some of the most adoringly cute reptiles known to man—such as this delightfully spiky horned lizard (I prefer the more colloquial name “horny toad”!). I’m probably going to regret not having photographed this fine specimen with the big camera.
Phrynosoma cornutum (Texas horned lizard) | Harding Co., New Mexico.
Fresh diggings beside a rock always invite a peek inside. You never know who might be peeking out.
Who’s home?
Peek-a-boo!
The trip having reached the halfway point, we debated whether to continue further south to the sand dunes of southern New Mexico (with its consequential solid two-day drive back to Wichita) or turn back north and have the ability to collect our way back. We chose the latter, primarily because we had not yet had a chance to explore the area around Vogel Canyon south of Las Animas, Colorado. We had actually planned to visit this area on the day we encountered P. integer in the shortgrass prairie north of town, and a quick visit before going back to check the traps that evening showed that the area had apparently experienced good rains as shown by the cholla cactus (Cylindropuntia imbricata) in full bloom.
Cylindropuntia imbricata | Otero Co., Colorado.
Whenever I see cholla plants I can’t help myself—I have to look for cactus beetles (Moneilema spp.). It had rained even more since our previous visit a few days ago, and accordingly insects were much more abundant. Several Moneilema adults were seen on the cholla, one of which I spent a good bit of time photographing. The iPhone photo below is just a preview of the photos I got with the big camera (which also included some very impressive-sized cicadas—both singing males and ovipositing females). The cactus spines impaled in the camera’s flash control unit serve as a fitting testament to the hazards of photographing cactus insects!
Moneilema sp. on Cylindropuntia imbracata } Otero Co., Colorado.
The hazards of photographing cactus beetles.
Later in the afternoon we hiked down into the canyon itself, and while insects were active we didn’t find much out of the ordinary. We did observe some petroglyphs on the sandstone walls of the canyon dating from the 1200s to the 1700s—all, sadly, defaced by vandals. Despite the rather uninspiring collecting, we stayed in the area for two reasons: 1) Jeff wanted to setup blacklights at the canyon head in hopes of collecting a blister beetle that had been caught there on an earlier trip, and 2) I had noted numerous Amblycheila larval burrows in the area (and even fished out a very large larva from one of them) and wanted to search the area at night to see if I could find adults. Jeff was not successful in his goal, and for a time I thought I would also not succeed in mine until we closed up shop and started driving the road out of the canyon. By then it was after 11 p.m. and we managed to find about a half-dozen A. cylindriformis adults. This was now the third time that I’ve found adults of this species, and interestingly all three times I’ve not seen any beetles despite intense searching until after 11 p.m and up until around midnight.
Lithographs on canyon wall | Mills Canyon, Colorado.
The next morning we found ourselves with two days left in the trip but several hundred miles west of Wichita, where I needed to drop Jeff off for his flight back home before I continued on home to St. Louis. I had hoped we could make it to the Glass Mountains just east of the Oklahoma panhandle to see what Prionus species might be living in the shortgrass prairies there (and also to show Jeff this remarkable place where I’ve found severalnewstaterecords over the past few years). As we headed in that direction, I realized our path would take us near Black Mesa at the western tip of the Oklahoma pandhandle, and having been skunked on my first visit to the area last year due to dry conditions but nevertheless intrigued by its very un-Oklahoma terrain and habitat I suggested we stop by the area and have a look around before continuing on to the Glass Mountains. We arrived in the area mid-afternoon and headed straight for a rock outcropping colonized by scrub oak (Quercus sp.) and pinyon pine (Pinus sp.)—very unusual for western Oklahoma—that I had found during my previous trip.
The area around Black Mesa couldn’t be more unlike the perception that most people have of Oklahoma.
I wanted to beat the oaks for buprestids—surely there would be a state record or two just sitting there waiting for me to find them, but as I started walking from the car towards the oaks the approach of a loud buzz caught my attention. I turned around to see—would you believe—a large Prionus beetle circling the air around me and was fortunate to net it despite its fast and agile flight. I hurried back to the car to show Jeff what I had found; we looked at each other and said, “Let’s collect here for a while.” The beetle had apparently been attracted to the lures in the car, so we got them out, set them up with some traps, and went about beating the oaks and watching for beetles to fly to the lure. Sadly, no jewel beetles were collected on the oaks, although I did find evidence of their larval workings in some dead branches (which were promptly collected for rearing). Every once in a while, however, a Prionus beetle would fly in, apparently attracted to the lure but, curiously, never flying directly to it and falling into the trap. Many times they would land nearby and crawl through the vegetation as if searching but never actually find the trap. However, just as often they would approach the trap in flight and not land, but rather continue circling around in the air for a short time and before suddenly turning and flying away (forcing me to watch forlornly as they disappeared in the distance). Based on their very large size, blackish coloration and broad pronotum, we surmised (and later confirmed) these must also be P. heroicus, despite thinking (and later confirming) that the species was not known as far east as Oklahoma. Not only had we found a new state record, but we had also recorded a significant eastern range extension for the species. And to think that we only came to Black Mesa because I wanted to beat the oaks!
Prionus heroicus male
Proof that Prionus heroicus males can bite hard enough to draw blood!
We each collected a nice series of the beetles, and despite never witnessing the beetles actually going to the traps a few more were found in the traps the next morning after spending the night in a local bed & breakfast. I also found a dove’s nest with two eggs hidden in the vegetation, and as we were arranging for our room at the bed & breakfast a fellow drove up and dropped off a freshly quarried dinosaur footprint (the sandstone, mudstone, and shale deposits around Black Mesa are the same dinosaur fossil bearing deposits made more famous at places like Utah’s Dinosaur National Monument).
Dove’s nest w/ eggs.
Freshly quarried dinosaur fossil footprint
By the way, if you ever visit the area, the Hitching Post at Black Mesa is a great place to stay. A longhorn skull on the barn above an authentic 1882 stagecoach give a hint at the ambiance, and breakfast was almost as good as what my wife Lynne can do (almost! 🙂 ).
Longhorn skull on barn at our Bead and Breakfast.
132-year-old stagecoach – model!
After breakfast we contemplated the long drive that lay between us and our arrival in Wichita that evening—our longer than expected stay in the area had virtually eliminated the possibility to collect in the Glass Mountains. Nevertheless, there was one more thing that I wanted to see before we left—the dinosaur footprints laying in a trackway along Carrizo Creek north of the mesa. I only knew they were in the area based on a note on a map, but as there were no signs our attempt to find them the previous day was not successful. Armed with detailed directions from the B&B owners, however, we decided to give it one more shot. Again, even after we found the site I didn’t see them immediately, I suppose because I was expecting to see distinct depressions in dry, solid rock. Only after the reflections of light from an alternating series of small puddles—each measuring a good 10–12″ in diameter—did I realize we had found them. Recent rains had left the normally dry creek bed filled with mud, with the footprints themselves still filled with water.
Dinosaur tracks | vic. Black Mesa, Oklahoma.
It is not surprising that I would be so excited to find the tracks, but what did surprise me was the effect they had on me. Seeing the actual signs of near mythical beasts that lived an incomprehensible 100 million years ago invites contemplation and reminds us that our time here on Earth has, indeed, been short!
Dinosaur tracks | vic. Black Mesa, Oklahoma.
By this time, we had no choice but to succumb to the long drive ahead. We did manage to carve out a short stop at the very first locality of the trip in an effort to find more Buprestis confluens (finding only a few more B. rufipes), but otherwise the day was spent adhering to our goal of reaching Wichita before nightfall. Jeff was home and sipping tea before lunchtime the next day, while I endured one more solid day of driving before making it back to St. Louis in time for dinner with the family. At that point, the trip already could have been considered a success, but how successful it ultimately ends up being depends on what beetles emerge during the next season or two from these batches of infested wood that I collected at the various spots we visited.
Wood collected for rearing wood-boring beetles.
If you like this Collecting Trip iReport, you might also like the iReports that I posted for my 2013 Oklahoma and 2013 Great Basin collecting trips as well.
Even though I am a scientist working in an organization with hundreds of other scientists, I can lay claim to one true uniquity—I am the only one I know of that has a skull on their desk! Six, actually. They’re not real (sadly), but their impact on most first-time visitors to my office is no less amusing. Typically the first question is, “What are those?”—to which my standard reply is, “Those are former colleagues with which I’ve had problems.” Maybe that is a little mean, but it usually gets a laugh (sometimes nervous). Hey, if somebody doesn’t understand my sense of humor, they’ll have to learn sooner or later.
¹ In anthropology, most of these would actually be called “crania” (skull minus associated mandible) rather than skulls. We can be less pedantic here.
I am, of course, talking about my collection of hominid fossil replicas. Yes, I am an entomologist, but I’ve also had a lifelong fascination with paleoanthropology and human evolution. Actually, I think my broad interest in multiple disciplines is rather typical of those who are drawn to the natural sciences, so it surprises me that there aren’t more scientists where I work with a skull on their desk. After all, this was a common practice among ancient scholars as a reminder of their mortality. My reasons for having skulls on my desk are less philosophical—I just like having replicas of some of paleoanthropology’s most important fossil hominid finds. They are icons of a subject that couldn’t be more relevent—our own origins. Just as nothing in biology makes sense except in the light of evolution, nothing in human society makes sense except in the light of human evolution. The skulls are a reminder of not just who we are, but why we are.
Taung 1, “Taung Child”
Taung 1, “Taung Child” (Australopithecus africanus) | Taung, Republic of South Africa, 2.8 mya
The “Taung Child” is thought to be a 3-year-old child representing Australopithecus africanus (which means “southern ape of Africa”). Discovered in 1924, it was the first hominid fossil discovered that, while definitely not a member of our own genus, could still be argued as somewhat human. Nevertheless, it would take another 20 years—once other, adult, specimens were discovered in southern Africa—before A. africanus would begin gaining acceptance in the scientific community.
The significance of the Taung Child was that it provided fossilized evidence of upright, two-legged (bipedal) walking much earlier than expected. Up to that time, it was believed that humans began to walk upright only after they had developed a large brain. Robert Broom, upon arriving in South Africa in 1936 and seeing the Taung Child for the first time, is said to have knelt at the edge of the table and exclaimed, “I behold my ancestor!” It is now thought that A. africanus represents southern African descendents of A. afarensis from east Africa but is not in the direct lineage leading to modern humans. Nevertheless, the Taung Child remains an iconic hominid fossil, especially given the suspected circumstances of its death—attacked and killed by an eagle! Puncture marks at the bottom of its eye sockets resemble those made by the talons and beak of modern eagles, which are known to attack monkeys in Africa today. The skull was also found among eggshells and a mixture of bones from other small animals that could have been preyed upon and show damage resembling that made by modern eagles.
STS 5, “Mrs. Ples”
STS 5, “Mrs. Ples” (Australopithecus africanus) | Sterkfontein, Republic of South Africa, 2.5–2.1 mya
Discovered in 1948 by Robert Broom, this nearly complete adult A. africanus cranium actually served to convince scientists of the time that the Taung Child was not just a baby chimpanzee whose ape-like features had not yet developed. Broom named the new fossil Plesianthropus transvaalensis and hypothesized that she was a middle-aged female—thus the nickname, “Mrs. Ples.” The fossil is now regarded to represent the same species as the Taung Child, differing chiefly in the adult character of prognathous (forward projecting) jaws, and is also now thought to have belonged to a sub-adult male.
I had the good fortune to see the actual fossil in person on a private tour of the Transvaal Museum’s “Broom Room” during a trip to South Africa in 1999. I wrote about that experience in a guest post at Christopher Taylor’s Catalogue of Organisms titled, Origins – A Day in the Broom Room as follows:
As Dr. Fourie held the cranium for me to look at, I noticed the fossil was about 3.5 feet off the floor—about the presumed height for the species. I suddenly saw Mrs. Ples standing before me in life – a living, breathing being, not an animal, yet not quite human either. I may not have used Broom’s precise words, but I whispered something along those lines to myself as the slender, hairy virtual creature stood before me. The Museum Gift Shop was selling plaster replicas of Mrs. Ples, one of which now sits on the desk in my office. I think about that experience at the Transvaal Museum almost everytime I look at it.
SK 48, “Paranthropus crassidens“
SK 48, “Paranthropus crassidens” (Paranthropus robustus) | Swartkrans, Republic of South Africa, 1.8–1.5 mya
While Robert Broom was excavating in South Africa, he recognized that the fossils he was finding represented two distinct morphs—a “gracile” form now encompassed by A. africanus, and a more “robust” form that he described in 1938 as Paranthropus robustus. SK 48, discovered by Broom and Robinson in 1952, was until recently the most complete example of this latter type. The term “robust” refers not to the size of the body, but rather the characters of the skull that include a prominent sagittal crest and robust zygomatics and mandible with large, thickly enameled post-canine dentition. These features provide extra space for chewing muscles and larger molar surfaces—adaptations linked to a powerful chewing complex designed for processing tough, fibrous foods. Paranthropus robustus appears to have been a dead end taxon, being the last of the robust australopithecines and having no apparent descendants. It seems to have been a contemporary of early representatives of the genus Homo—our genus—in southern Africa (tempting speculation on what might have happened to them!).
This was another of the fossils I saw first hand during my visit to the Broom Room, and the plaster replica purchased from the Museum gift shop sits alongside Mrs. Ples on the desk in my office.
When it comes to fossil hominids, Olduvai Gorge in Tanzania is easily among the most famous of sites, and of the fossils found at Olduvai Gorge, OH 5 “Nutcracker Man” is easily the most famous. Discovered in 1959 by Mary Leakey, it was originally classified as a new genus and species, Zinjanthropus boisei, but is now accepted as a member of the genus Paranthropus. It is thought to represent a derived, “hyper-robust” species descended from P. aethiopicus (see “The Black Skull” below), which lived in east Africa a million years earlier. Like its congeneric contemporary in southern Africa (P. robustus), Nutcracker Man appears to have died out with no living descendents.
The discovery of Nutcracker Man (sometimes called “Zinj” in reference to its original genus name) brought the “robust” morph, typified until then by P. robustus, to a new level of robusticity: wide, outward-flaring zygomatic arches that projected forward of the nasal opening to form a dished-shape face, a large sagittal crest atop the skull, and a massive lower jaw. These traits no doubt allowed plenty of room and attachment for the huge chewing muscles needed for its diet. If features such as this aren’t enough to justify a nickname like Nutcracker Man, surely the megadont cheek teeth—up to four times the size of our own—will seal the deal!
KNM-WT 17000, “The Black Skull”
KNM-WT 17000, “The Black Skull” (Paranthropus aethiopicus) | West Turkana, Kenya, 2.5 mya
The “Black Skull” is actually one of the more recent hominid fossil finds. Discovered in 1985 by Alan Walker, it was originally classified as Paranthropus boisei—the same species as “Nutcracker Man.” However, the Black Skull is nearly a million years older than Nutcracker Man and apparently shares some characters with the even older Australopithecus afarensis (“Lucy” being its most famous member). All three of these forms lived in east Africa, though at different times, and the Black Skull was eventually deemed to represent yet another distinct taxon—Paranthropus aethiopicus (described some time earlier, but from only a partial lower jaw). It is the earliest known member of the genus, and the Black Skull remains the only known skull representing the species. Paranthropus aethiopicus likely gave rise to the later P. boisei in east Africa and P. robustus in southern Africa.
The Black Skull isn’t as robust as Nutcracker Man, but it is my favorite robust australopithecine fossil because… it’s BLACK! How cool. Actually the skull started out white, just like any other bone prior to fossilization, and developed its dramatic dark blue-black color as a result of the manganese-rich soil in which it spent the past two and a half million years.
The “Turkana Boy” skull is actually part of a remarkably complete skeleton excavated in 1984 by Richard Leakey and colleagues. Some regard Turkana Boy as a representative of Homo erectus, the first human to migrate out of Africa into Eurasia, while others consider the African populations to represent the distinct taxon, H. ergaster. One of paleoanthropology’s most contentious topics is whether modern humans evolved only from H. ergaster in Africa (the second “out-of-Africa”) or locally from H. erectus populations (including H. ergaster) throughout the Old World (“multiregionalism”). Molecular data seems to favor the former, but the latter has passionate adherents. Of all the skulls sitting on my desk, this one alone can be regarded as a possible near-direct ancestor!
Turkana Boy is not only remarkable by the completeness of its skull, but also the astonishing 90% coverage of the complete skeleton that results when bilateral symmetry is used to fill missing bone. Such completeness is extraordinarily rare among fossil hominids, and it has provided a wealth of information about the body size, shape, and growth rates of H. ergaster. The skeleton is thought to have belonged to a boy 12 or 13 years of age, measuring 5’3″ tall and weighing 106 lbs at the time of death. Interestingly, the pelvis reveals a greater ability to run than modern humans, while other bones more closely resemble those of Australopithecus. The long, slender body seems to be an adaptation to the hot, dry climate that existed in Africa.
Thanks to all who participated in ID Challenge #22. I have to admit how surprised and impressed I am about how many of you seem to be as interested in and up to date on human evolution as I. Congratulations to perennial BitB challenge master Ben Coulter, who takes the win with 63 pts. Dennis Haines (61 pts) and Mike Baker (60 pts) complete the podium, and honorable mentions go to Sam Heads (58 pts) and tandemtrekking (57 pts).
Most of the Green River Formation (GRF) insect fossils that I have on loan clearly represent either beetles (order Coleoptera) or flies (order Diptera). I’ve already shown a few of the latter (fungus gnat, midge), as well as some that don’t belong to either order (ant, cricket?). Here are a few more that seem identifiable to order, but family-level identification is less certain. Thoughts from the readership would be most welcome.
This fossil shows an aggregation of insects that I believe represent some kind of beetle. Based on shape and size (16.7 mm length) I’m guessing perhaps either a diving beetle (family Dytiscidae) or whirligig beetle (family Gyrinidae). These are both aquatic families, although only the former is among the beetle families recorded from the GRF by Wilson (1978).
There are two insect fossils on this specimen, but the closeup is the one near the center of the rock. It is tiny (3.5 mm in length), and at first I thought it might be a fly (order Diptera). However, dipterist Chris Borkent thinks it might be a small hymenopteran (bee?) because it has what looks to be long multi-segmented antennae. The only bee family recorded for the GRF by Wilson (1978) is Anthophoridae (now included within Apidae), of which this fossil clearly is not a representative. There are six other hymenopteran families recorded in that work, of which Tenthredinidae is the only one that seems plausible. Of course, it could represent a family not recorded by Wilson (1978). Collected along Hwy 139 in Douglas Pass (Garfield Co., Colorado).
Here is a closeup of the other fossil (far right in photo above). This looks to me like a brachyceran fly, and I’ve sent a high resolution version of the image to Chris Borkent to see what he thinks.
The label accompanying this fossil indicates “Mosquito (?),” but to my eye this looks like a true bug (order Hemiptera). It is small—only 5.9 mm in length—and has the gestalt of a plant but (family Miridae) or seed bug (family Lygaeidae). GRF fossils representing the latter but not the former were recorded by Wilson (1978). Also collected along Hwy 139 in Douglas Pass (Garfield Co., Colorado).
REFERENCES:
Wilson, M. V. H. 1978. Paleogene insect faunas of western North America. Quaestiones Entomologicae 14(1):13–34.
Several of the insect fossils collected from the Green River Formation (45–50 mya) that I am photographing appear to be flies, and specifically members of the “primitive” suborder Nematocera. This is not surprising, as the G.R. Formation of Colorado, Utah, and Wyoming, is composed of shales derived from volcanic ash sediments that were laid down in a system of large, shallow lakes. Most (all?) nematoceran flies are aquatic to some degree in the larval stage, thus the adults are also closely associated with such habitats for mating and egg laying.
Diptera: Chironomidae | USA: Colorado, Garfield, Hwy 139, Douglas Pass
This particular fossil looked to me a lot like the more elegantly preserved fossil of another fly that I posted a few days ago, which at the time I thought represented a member of the family Mycetophilidae (fungus gnats) or Sciaridae (black-winged fungus gnats). Several knowledgable specialists offered their opinions in comments at this site and at Facebook’s Diptera forum (my thanks to all who offered their opinion), with most settling on Mycetophilidae and Vlad Blagoderov further suggesting subfamily Mycetophilinae. The fossil posted here seemed to me to represent a dorsal view of the same species, but, of course, I’m a coleopterist—so what do I know? Indeed, dipterist Dr. Chris Borkent believes this is actually a species of Chironomidae (common name simply “midges”)—also a nematoceran but differing from Mycetophilidae by their longer front tarsi and longer, relatively narrower wings. Males of the family have thickly plumose (“feathery”) antennae, which are not visible in this specimen and thus suggesting it might be a female. I wouldn’t doubt Chris’ identification for a second, as he comes from good stock—his father is Art Borkent, a world expert on several families of nematoceran dipterans. Art also agreed after seeing the photo that it looked like a female chironomid midge, so that is what I am going with. Thank you, Chris and Art, for your help in identifying this fossil!
Complete fossil specimen (63 mm x 52 mm maximum each axis).
Here is one of the more elegantly preserved specimens among the collection of Green River Formation fossil insects that I am photographing. It is obviously a fly (order Diptera), but I don’t agree with the preliminary identification of “Mosquito?” as indicated on its label. Rather, I think it is one of the fungus gnats—also members of the suborder Nematocera and, thus, closely related to mosquitos (family Culicidae), but with distinctly elongate coxae (bases of the legs) and lacking the elongated proboscis that mosquitos use for sucking blood. It’s hard to decide between Mycetophilidae (fungus gnats sensu stricto) or Sciaridae (dark-winged fungus gnats), which differ in whether the eyes meet above the antennae (Sciaridae) or not (Mycetophilidae). However, Borrer & White (1970) mention that species of the former are generally less than 5 mm in length, while the latter range from 5–10 mm. This specimen measures 4.15 mm from the front of the head to the tip of the abdomen, so maybe that is evidence supporting Sciaridae (although perhaps there were smaller mycetophilids 50 mya than today).
Here is a view of the whole fossil, measuring approximately 50 mm on each side:
REFERENCE:
Borrer, D. J. & R. W. White. 1970.A Field Guide to the Insects of America North of Mexico. Houghton Miffton Company, Boston, 404 pp.
I had such helpful participation with my first fossil ID request that I thought I would go to the well again. This one is not so enigmatic as the first—it is clearly an insect, but it’s the only insect fossil among the batch that I haven’t settled on at least an order-level identification. Again, this is one of a set of 20 fossils loaned to me by a local collector for photographs and possible identifications, all coming from the Green River Formation in Colorado and dating back to the early to mid-Eocene (45–50 mya).
USA: Colorado, Rio Blanco Co., Parachute Creek Member. Body length = 11.05 mm.
The label for this fossil indicates “Planthopper; Homoptera; Fulgoridae”; however, the short, robust legs and overall gestalt do not look right for either a planthopper or really any of the other hemipteran groups. What I see is an indistinct (mandibulate?) head, a distinct and well-developed pronotum, mes0- and metathoracic segments that are not nearly as heavily sclerotized as the pronotum but also lacking any sign of wings, a distinctly segmented abdomen with 9 or 10 segments, and short robust legs. I’m thinking an apterous/brachypterous coleopteran (Staphylinidae?) or a wingless member of one of the orthopteroid orders (although size alone excludes many of the latter—at more than 11 mm in length it is too large for something like Zoraptera). At first I thought the extension near the apex of the abdomen was a cercus, but I now think this is part of the piece of debris over the abdomen as there is no evidence of a cercus on the left side—another knock against something orthopteroid. Still, the lack of any trace of elytra—however shortened—keeps me from fully endorsing Coleoptera. Okay, so what do you guys think?